UC Davis Tahoe Environmental Research Center is dedicated to interdisciplinary research and education to advance the knowledge of aquatic and terrestrial ecosystems and their interactions within natural and developed Earth systems, and to communicate science-informed solutions worldwide.
The 2020 Tahoe: State of the Lake Report is dedicated to the 41 years that Scott Hackley worked as a UC Davis researcher at Lake Tahoe, before retiring in June 2020.

Scott went far beyond the call of duty and his job description by measuring streamflows during the peaks of epic storms, gathering water samples across those same streams when concern for personal safety would have cautioned most people to defer to another day, and conducting periphyton samples during winter and spring for decades in a leaky wetsuit. His replacement wetsuit arrived two months before his retirement.

Many of the data points contained in this report and all previous reports were produced by Scott. If you find the report to be too long and to contain too much data, please contact Scott directly. Thank you Scott, for all your years of hard work and meticulous research. We wish you the best in your retirement!
FUNDING TO ASSEMBLE AND DISTRIBUTE THIS REPORT WAS PROVIDED BY THE FOLLOWING SPONSORS:

$5000 and above

League to Save Lake Tahoe

$1000 to $2500

TAHOE: STATE OF THE LAKE REPORT 2020
TAHOE.UCDAVIS.EDU

under $1000

TAHOE: STATE OF THE LAKE REPORT 2020
TAHOE.UCDAVIS.EDU
TABLE OF CONTENTS

1. Introduction
2. Executive Summary
3. About Lake Tahoe
4. About the UC Davis Tahoe Environmental Research Center
5. Map of Tahoe Basin Data Collection Sites
6. Current Directions
 6.1 Current research synthesis
 6.4 Clearly, Mysids are a problem
 6.9 An alga for every season
 6.11 Metaphyton detection using a helicopter and UAV
 6.13 Sugar pine reforestation
 6.15 Sugar pine genetics
 6.17 Rise of robots
 6.18 Ice fishing for physics
 6.19 Plastics in Lake Tahoe
 6.22 Pandemic limnology
 6.23 Reshaping science education in a pandemic
 6.25 The perils of paddleboarding
 6.27 Lake Tahoe's sister lakes in Patagonia
7. Meteorology
 7.1 Air temperature - smoothed daily maximum and minimum (since 1911)
 7.2 Air temperature - annual average maximum and minimum (since 1910)
 7.3 Below-freezing air temperatures (since 1910)
 7.4 Monthly air temperature (2017, 2018, 2019 and 1910 to 2019 average)
 7.5 Annual precipitation (since 1910)
 7.6 Monthly precipitation (2017, 2018, 2019 and 1910 to 2019 average)
 7.7 Snow as a fraction of annual precipitation (since 1910)
7.8 April snowpack (since 1916)
7.9 Daily solar radiation (2019)
8. Physical properties
 8.1 Lake surface level (since 1900)
 8.2 Lake surface level (since 2016)
 8.3 Water temperature profile (2019)
 8.4 Average water temperature (since 1970)
 8.5 Annual average water temperature (since 1970)
 8.6 Annual surface water temperature (since 1968)
 8.7 Maximum daily surface water temperature (since 1999)
 8.8 July average surface water temperature (since 1999)
 8.9 Deep water temperature (since 1970)
 8.10 Depth of mixing (since 1973)
 8.11 Lake stability (since 1968)
 8.12 Stratified season length (since 1968)
 8.13 Beginning of the stratification season (since 1968)
 8.14 End of stratification season (since 1968)
 8.15 Peak stratification season (since 1968)
 8.16 Onset of snowmelt pulse (since 1961)
9. Nutrients and Particles
 9.1 Sources of clarity-reducing and blueness-reducing pollutants (2019)
 9.2 Pollutant loads from seven watersheds (2019)
 9.3 Nitrogen contribution by Upper Truckee River (since 1989)
 9.4 Phosphorus contribution by Upper Truckee River (since 1989)
 9.5 Suspended sediment contribution by Upper Truckee River (since 1989)
 9.6 Lake nitrate concentration (since 1980)
 9.7 Lake total hydrolyzable phosphorus concentration (since 1980)

(Continued on next page)
TABLE OF CONTENTS, CONTINUED

9.8 Nitrate distribution (2019)
9.9 Total hydrolyzable phosphate distribution (2019)
9.10 Fine particle distribution (2019)

10. Biology
10.1 Algae growth (primary productivity) (since 1959)
10.2 Algae abundance (since 1984)
10.3 Chlorophyll-a distribution (2019)
10.4 Annual distribution of algal groups (since 1982)
10.5 Abundance of dominant diatom species (2019)
10.6 Algal groups as a fraction of total biovolume (2019)
10.7 Peak shoreline algae concentrations (since 2000)
10.8 Shoreline algae populations (2019)

11. Clarity
11.1 Annual average Secchi depth (since 1968)
11.2 Winter Secchi depth (since 1968)
11.3 Summer Secchi depth (since 1968)

12. Education and outreach
12.1 TERC education and outreach (2019)
12.2 TERC educational exhibits (2019)
12.3 TERC outreach (2019)
12.4 TERC educational programs (2019)
12.6 TERC special events (2019)
INTRODUCTION

The University of California, Davis has conducted continuous monitoring of Lake Tahoe since 1968, amassing a unique record of change for one of the world’s most beautiful and vulnerable lakes.

In the UC Davis Tahoe: State of the Lake Report, we summarize how natural variability, long-term change, and human activity are affecting the lake’s clarity, physics, chemistry, and biology. We also present a portion of the data collected in 2019—presenting all of it would be a monumental task. While Lake Tahoe is unique, the forces and processes that shape it are the same as those acting in most natural ecosystems. As such, Lake Tahoe is an indicator for other systems both in the western United States and worldwide.

Our goal is to understand the lake’s complexity and to use the knowledge gained to provide the scientific underpinnings for ecosystem restoration and management actions. Choosing among those options and implementing them is the role of management agencies that also need to take into account a host of other considerations.

This annual report is intended to inform non-scientists about the variables that affect lake health. One indicator of Lake Tahoe’s health status, the annual clarity, is reported earlier each year. In this report we publish many other environmental and water quality factors that serve as other indicators of the lake’s condition and help explain the lake’s changing clarity. This report sets the context for understanding the year to year changes and those that are observed over time scales of decades.

An important part of this Report are updates on research taking place independently of the long-term monitoring. These highlight some of the most exciting and promising findings of work that is still in progress. The new insights gained through this research will help keep Lake Tahoe at the cutting edge of science in the years to come. Many of these sections are exploring new ideas and approaches to address the ever evolving challenges to Lake Tahoe.

The data we present are the result of efforts by a great many scientists, engineers, students, technicians, and educators who have worked at Lake Tahoe throughout the decades since sampling commenced. I would, however, like to acknowledge (in alphabetical order) the contributions of Brant Allen, Jonathan Arthur, Karen Atkins, Kian Bagheri, Brandon Berry, Mike Bruno, Tom Burt, Luciana Cardoso, Sudeep Chandra, Yuan Cheng, Danny Chuck, Bob Coats, Alicia Cortes, Stephanie Coppeto, Ben Daniels, Mark Enders, MJ Farruggia, Alex Forrest, Nick Framsted, Susan Frankel, Charles Goldman, Nick Gomez, Baylee Goodwin, Anne Graham, Scott Hackley, Tina Hammell, Simon Hook, Camille Jensen, Yufang Jin, Kwungwoo Lee, Anne Liston, Kevin Livingston, Patricia Maloney, Elsa Marin, Elise Materia, Jasmin McInerney, Antonina Myshyakova, Jo Myungchul, Holly Oldroyd, John Reuter, Bob Richards, Will Richardson, Gerardo Rivera, Derek Roberts, Steve Sadro, Goloka Sahoo, Heather Segale, Katie Senft, Steven Sesma, Samantha Sharp, Roland Shaw, David Smith, Sheri Smith, Adrienne Smits, Drew Stang, Erin Suenaga, Jae Sung, Micah Swann, Lidia Tanaka, Raph Townsend, Alison Toy, Sean Trommer, Seung Tae, Sergio Valbuena, Aaron Vanderpool, Shohei Watanabe, Brian Wiebe, Andy Wong, and Carmen Woods to this year’s report. In particular, Shohei Watanabe was responsible for the majority of the data analysis and Alison Toy led the compilation and layout of the final report.

Funding for the actual data collection and analysis has come from many sources over the decades. While many additional water quality variables could be tracked, funding ultimately limits what we measure and report on. Current funding for the long-term monitoring and analysis is provided by the California Tahoe Conservancy, Lahontan Regional Water Quality Control Board, Lake Tahoe Marina Association, League to Save Lake Tahoe, Parasol, Tahoe Fund, Tahoe Lakefront Owners Association, Tahoe Regional Planning Agency, Tahoe Water Suppliers Association, and True Point Solutions. We sincerely thank these organizations for their dedication in supporting science to save the lake.

Sincerely,

Geoffrey Schladow, director
UC Davis Tahoe Environmental Research Center
291 Country Club Drive
Incline Village, NV 89451
gschladow@ucdavis.edu
(775) 881-7563