Science Expo 2019 Physical Science
Brief Activity Descriptions

Properties of Matter

Physical Properties
1. Matter on the Move: Three trays are filled with marbles and three basket models are filled with ping pong balls. The amounts of marbles represent how atoms of a substance move when in a solid, liquid, and gaseous state. When the marbles are more tightly packed together, like atoms in a solid state, they have little room to move. A fan is placed under them to represent how matter behaves when they are in different states of matter.

2. Phase Change Poppers: This activity uses dry ice to demonstrate the process of sublimation. A small amount of dry ice is placed in a container with a lid, and as the solid dry ice converts to gaseous carbon dioxide, the increased pressure causes the lid of the container to pop off.

3. Invisible Mass: This activity uses fizzkeepers and a scale to reveal that air has mass. Use the fizzkeepers to pump more air into a bottle and measure the increase in mass with the sensitive balance.

4. It’s a Gas: This activity demonstrates two properties of gases—gases take up space and exert pressure. Two flasks and a beaker are connected with stoppers and tubing, and when baking soda, water, and citric acid are combined in the first flask, carbon dioxide emitted from the reaction exerts enough pressure to move through the tubing into the second flask, which displaces colored water from the second flask into the beaker.

5. Slime Time: Investigate the odd properties of non-Newtonian fluids. A mixture of cornstarch and water behaves like both a liquid and a solid.

Density
6. Mystery Box: Beans, ping-pong balls, and metal balls are placed in a box with the metal balls visible at the top and the ping-pong balls at the bottom. When the box is shaken, differences in density cause the balls to “mysteriously” float to the top and the metal balls to sink to the bottom.

7. Floating Golf Ball: Discover how to manipulate the density of water by adding salt. When enough salt is added to a cup of water with a golf ball in it, the density of water increases to the point that the golf ball floats.

8. Gassy Lava Lamp: Students learn that water is more dense than oil so they do not mix when placed in the same bottle. They also discover that if a chemical reaction produces a gas, the gas is the least dense and will escape out of the mixture.

9. Hot and Cold Density: Students investigate how the temperature of water affects its density. A model that using colored hot and cold water demonstrates how cold water sinks while hot water floats.
10. Changing the Density of an Object: Students find out that coke and diet coke cans with the same volume do not have the same density because their mass is different. They discover how to change the density of these objects by altering its mass and volume.

Mixtures
11. Separation Anxiety: Students determine how to separate a mixture of plastic beads, sand, iron fillings and poppy seeds. They are given different tools and determine which tool works the best for the removal of specific substances.

Chemical Reactions
12. Shake It Up!: Students discover that certain substances can indicate that a chemical reaction has taken place. Glucose reacts with oxygen and methylene blue reveals this change. Cabbage juice can indicate if a substance is acidic by turning red or basic by turning yellowish-green.

13. Exothermic vs. Endothermic: Students explore how chemical reactions can produce changes in temperature. They can feel the results of an exothermic reaction in the form of heat between calcium chloride and water. An endothermic reaction between urea and water, which consumes heat results in a feeling that is much cooler to the touch.

Energy

Mechanical
1. Give it a Ride: Students navigate their marble in a roller coaster course and realize that roller coasters are about potential and kinetic energy conversions.

2. Keep Your Eye on the Ball: By holding a tennis ball close to their nose and then letting go, students will learn that energy cannot be created nor destroyed, only converted into different forms.

Heat

Light
4. Great Wall of Color: Students uncover why bubbles are so colorful and how to poke a bubble without it popping!

6. Three Little Pigments: Students recreate an image using just the secondary colors of light.

7. Colored Shadows: Using the primary colors of light, students discover what makes a shadow and explore the different colors of shadows.
8. **Laser Light Show**: Students see laser beams reflect and refract off different colors of Jell-O and observe total internal reflection in a stream of water.

9. **Why is the Sky Purple?**: Don’t you mean, why is the sky blue? Students learn how scattering causes us to see the sky as blue and sunsets as red, and why our sky isn’t purple.

10. **It’s a Mirror-cle**: Students stand over a mirror to give off the illusion of flying. Using mirrors students can also combine faces with a partner!

11. **Super Spectroscopes**: Students observe different sources of light through a spectroscope and build their own simple spectroscope to take home.

12. **Refraction Action**: Students witness an arrow reverse direction and a magnifying glass de-magnify in this activity.

Sound

13. **Musical Coat Hangers**: Does sound move the same in different forms of media? Students find out using air, water and ice, and strings tied to coat hangers to magnify sound waves.

14. **Seeing Sound**: Sound carries energy, as students find out by touching tuning forks to water and ping pong balls. Students also create patterns using a Chladni disk.

Forces and Motion

Momentum

1. **Show Me the Momentum**: Two balls on their own don’t bounce very high, but when bounced together conservation of momentum causes one to bounce really high and the other not at all. Students manipulate linear momentum by changing mass or velocity.

2. **Momentum machine**: Students discover the principle of angular momentum by spinning in an office chair with hand weights. They will feel acceleration and deceleration as they bring the weights near and far away from their body.

Air Pressure

3. **Automatic Balloon Inflator**: A balloon on top of a bottle is placed into warm and cold water, and left at room temperature. The balloon inflates or deflates at different temperatures as the air in the bottle expands or contracts. Students learn air expands when heated and contracts when cooled.

4. **Mystery Candle**: A candle placed in water is lit and covered with an Erlenmeyer flask. The flame heats the air in the flask, pushing it out of the flask. The air pressure outside of the flask pushes water into the flask.
5. **Magic Card:** A mason jar of water with a mesh lid is turned upside down with a notecard covering the mouth. The card and the water stay put! The notecard is removed and the water still does not fall! Students will learn that the atmosphere exerts pressure on objects and cohesion and adhesion form strong bonds between water molecules and other surfaces.

Gravity

6. **Gravity Keeps you Down:** Students try to make a feather and a book fall at the same rate. Students learn that air resistance causes objects to fall at different rates depending on their size and shape.

7. **Strike a Balance:** Students investigate center of gravity with a magic balancing toys and a fulcrum challenge. Students learn that center of gravity keeps objects balanced.

Friction

8. **Friction Frenzy:** Students investigate friction with sandpaper covered wooden blocks and blocks coated in petroleum jelly. In a race in which two students are pulled by rope, one sitting on the ground, one sitting on a skateboard students learn what friction is and how it effects movement.

Magnetism

9. **Magnet Magic:** A hanging donut magnet is pulled or pushed away by block magnets. Magnetic fields are seen through attraction and repulsion of different magnets.

10. **Magnet Mania:** Students investigate magnetism comparing magnetic and nonmagnetic materials. Students will test the strength of magnets and their magnetic field in 3 challenges. Students will understand that not all materials are magnetic and that magnets have magnetic fields and investigate the strength of magnetic force.

11. **Eddy Currents:** Students view eddy currents by dropping magnets through a plastic or copper tube and with the use of aluminum plates. Students will learn that eddy currents have magnetic fields that oppose those of magnets.

Properties of Water

12. **H2Olympics:** Student-Olympians participate in 3 events including adding drops of water onto a penny, floating paperclips on water, and comparing paper towel absorption. Through these activities students will learn basic properties of water including cohesion, adhesion, surface tension and capillary action.