
Abstract Millions of lakes worldwide are distributed at latitudes or elevations resulting in the formation 
of lake ice during winter. Lake ice affects the transfer of energy, heat, light, and material between lakes and 
their surroundings creating an environment dramatically different from open-water conditions. While this 
fundamental restructuring leads to distinct gradients in ions, dissolved gases, and nutrients throughout the 
water column, surprisingly little is known about the resulting effects on ecosystem processes and food webs, 
highlighting the lack of a general limnological framework that characterizes the structure and function of lakes 
under a gradient of ice cover. Drawing from the literature and three novel case studies, we present the Lake 
Ice Continuum Concept (LICC) as a model for understanding how key aspects of the physical, chemical, and 
ecological structure and function of lakes vary along a continuum of winter climate conditions mediated by 
ice and snow cover. We examine key differences in energy, redox, and ecological community structure and 
describe how they vary in response to shifts in physical mixing dynamics and light availability for lakes with 
ice and snow cover, lakes with clear ice alone, and lakes lacking winter ice altogether. Global change is driving 
ice covered lakes toward not only warmer annual average temperatures but also reduced, intermittent or no ice 
cover. The LICC highlights the wide range of responses of lakes to ongoing climate-driven changes in ice cover 
and serves as a reminder of the need to understand the role of winter in the annual aquatic cycle.

Plain Language Summary Millions of lakes worldwide freeze during winter. The formation of lake 
ice dramatically alters lakes by isolating them from their surrounding landscape and atmosphere. The thickness 
and optical qualities of ice and snow regulate the amount of solar radiation entering lakes, while shielding them 
from wind energy. Consequently, lake ice is an important factor regulating physical mixing dynamics within 
lakes, and structuring vertical thermal and chemical gradients. Although organisms from bacteria to fish have 
adapted to the winter environment, we lack a comprehensive understanding of how variation in lake ice cover 
conditions affects fundamental ecosystem processes or food web structure. Here, we combine a synthesis of the 
current literature with three novel case studies to develop the Lake Ice Continuum Concept as a framework for 
understanding how key aspects of the physical, chemical, and ecological structure and function of lakes vary 
along a continuum of energy inputs mediated by winter climate. This framework is useful for understanding 
changes associated with seasonal ice dynamics and for predicting how lakes may respond to climate change.
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Key Points:
•  Many lakes experience ice cover, yet 

there are no general frameworks for 
understanding responses to differing 
ice and snow conditions

•  The Lake Ice Continuum Concept is 
a framework representing how lake 
ecosystems vary along a continuum of 
energy inputs mediated by winter

•  We present a new approach for 
characterizing lakes within a landscape 
context and for testing our knowledge 
of changing winter climates
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1. Introduction
Lake ice has profound ecological and societal consequences (Denfeld et  al.,  2018; Knoll et  al.,  2019; Öz-
kundakci et al., 2016; Sharma et al., 2019). There are an estimated 117 million lakes worldwide, most of which 
are located above 45° North (Verpoorter et al., 2014) and typically freeze over during winter. Although our 
understanding remains limited in comparison to studies conducted during ice-free seasons, numerous studies 
have documented the physical, chemical, and biological processes that occur under ice (e.g., Bižić-Ionescu 
et al., 2014; Denfeld et al., 2018; Hampton et al., 2017; McMeans et al., 2020; Powers, Labou, et al., 2017; 
Rue et al., 2019). Despite often being considered a period of relative quiescence, ecosystem functions dur-
ing the winter are often dynamic (Bertilsson et al., 2013; Denfeld et al., 2018; Grosbois et al., 2017; Jansen 
et al., 2021). Moreover, there is growing evidence that winter conditions set the stage for those of summer, and 
vice versa (Hampton et al., 2017), and that lakes must be viewed across a full seasonal continuum (Salonen 
et al., 2009).

A comprehensive understanding of winter ecosystem structure and function must include the full range of 
interannual and long-term variation experienced by a lake. While some lakes experience little or no snow 
cover (Schindler & Smol, 2006) or interannual variability in snow cover, warmer winters are likely to cause 
increasing ablation of the snowpack and precipitation falling as rain rather than snow in the future (Dumanski 
et al., 2015; Fernandez et al., 2020; Sadro et al., 2018; Sickman et al., 2003). Many lakes with extended records 
of ice history show declines in ice duration over the last century (Benson et al., 2012; Magnuson, 2000), a 
trend that is expected to continue with climate warming (Caldwell, Chandra, Albright, et al., 2020; Filazzola 
et  al.,  2020). The number of lakes periodically experiencing an ice-free winter is expected to increase by 
hundreds of thousands depending upon the intensity of warming (Sharma et al., 2019). Climate warming is 
also impacting lakes in polar regions, where thinning margins of perennially ice covered lakes are creating 
new hotspots for littoral productivity (Bégin et al., 2021; Castendyk et al., 2016). Although changes in lake 
ice conditions appear to be accelerating (Imrit & Sharma, 2021) and may have a myriad of cascading effects 
(Preston et al., 2016), we lack a conceptual framework to understand and predict the effect of such changes on 
ecosystem structure and function.

Many of the effects of ice cover arise from the constraints it places on energy fluxes associated with transmission 
of solar radiation, mixing dynamics, and heat exchange. Depending on the lake and year, the duration of seasonal 
ice cover can range from as short as a few days to the entire year, and ice thickness from less than a centimeter to 
multiple meters. The formation of lake ice severs or mutes linkages with the landscape and atmosphere, creating 
an aquatic environment that strongly contrasts with open-water conditions. Viewed in terms of light inputs and 
connectivity to the atmosphere/landscape (Figure 1a), the response of ice-covered lakes to seasonal changes in 
light and energy inputs resemble hysteresis loops. Light and energetic inputs in the winter are low, increasing 
during spring and summer until lakes become ice-free, with the shape and lag of these trajectories modulated by 
ice cover dynamics. Changes in climate that reduce the duration of ice cover, cause intermittency, or result in its 
complete loss have the potential to dramatically alter winter light and thermal regimes within lakes; effects that 
can also carry over to subsequent seasons (Figure 1b). Consequently, developing a general framework is impera-
tive for characterizing how the ecological structure and function of lakes may shift under future climate scenarios. 
Such a framework is equally important for understanding differences among lakes that span large gradients in 
winter ice dynamics. Drawing from a synthesis of the literature, we present a conceptual model (Figure 2) that 
explores these conditions as a continuum of lake ice duration and condition (e.g., thickness and snow depth), 
which regulate energy inputs and subsequent physical, chemical, and biological structure. In support, we offer 
winter case study examples from three lakes (Simoncouche, Mendota, and Stechlin; Boxes 1–3) to demonstrate 
key processes and patterns relevant to the conceptual model, exceptions thereto, and associated hypotheses in a 
changing world.

2. The Lake Ice Continuum Concept
The Lake Ice Continuum Concept (LICC) provides a framework for understanding how lake ecosystems vary 
along a continuum of energy inputs mediated by winter climate, ice, and snow. The LICC is not intended to rep-
resent a continuum of successive states through which an individual lake will necessarily transition in association 
with changes in climate. In lakes that experience seasonally freezing conditions, the ice and snow regime a given 

Supervision: E. Cavaliere, I. B. Fournier, 
V. Hazuková, G. P. Rue, S. Sadro, C. M. 
O'Reilly
Visualization: E. Cavaliere, I. B. 
Fournier, V. Hazuková, G. P. Rue, S. A. 
Berger, H. A. Dugan, S. M. Powers, C. 
M. O'Reilly
Writing – original draft: E. Cavaliere, 
I. B. Fournier, V. Hazuková, G. P. Rue, 
S. Sadro, S. A. Berger, J. B. Cotner, H. 
A. Dugan, N. R. Lottig, B. C. McMeans, 
T. Ozersky, S. M. Powers, M. Rautio, C. 
M. O'Reilly
Writing – review & editing: E. 
Cavaliere, I. B. Fournier, V. Hazuková, 
G. P. Rue, S. Sadro, S. A. Berger, J. B. 
Cotner, H. A. Dugan, S. E. Hampton, N. 
R. Lottig, B. C. McMeans, T. Ozersky, S. 
M. Powers, M. Rautio, C. M. O'Reilly



Journal of Geophysical Research: Biogeosciences

CAVALIERE ET AL.

10.1029/2020JG006165

3 of 19

lake experiences will be regulated by a combination of large and small scale factors. Climate variability along lat-
itudinal and elevational gradients interacts with local scale factors such as aspect, land cover, lake morphometry, 
and lake trophic state to drive the energetics affecting seasonal and interannual variability in ice and snow. These 
properties may also mediate the lake ecosystem response to changing winter conditions. Variation in ice thick-
ness, ice structure or optical quality, depth of snow cover, and overall duration of ice cover together regulate ex-
posure to wind, incoming solar radiation, and other atmospheric/landscape processes, and establish the dominant 
mixing regimes within lakes (Figure 2.1). The presence of ice and the climatic conditions that cause precipitation 
to fall as snow reduce the connectivity between lakes and their air- and watersheds (Figures 2.1a and 2.1b). Pe-
riods without winter ice cover have the potential for higher energetic fluxes through wind exposure, and higher 
or altered input rates of allochthonous material when precipitation falls as rain (Figure 2.1c). As a result of the 
increased connectivity to the atmosphere and landscape, lakes that lose ice cover will respond more directly to 
variation in winter or early spring weather patterns (Smits et al., 2020), leading to profound differences in the 
early spring lake condition.

By regulating energetic fluxes, lake ice determines the dominant physical mixing regimes within lakes (Lew-
is,  1983), influences time scales of mixing, controls the distribution of matter and energy throughout the 
water column, and establishes the template for biological structure and ecosystem function (Figure  2.2). 
Thus, the duration of ice cover also factors in the development and strength of redox and biogeochemical 
gradients in the water column. Differences in phytoplankton biomass and rates of primary productivity along 
the continuum of light availability in ice-covered lakes will drive differences in the oxycline and variation 
in redox potential with depth. Such vertical gradients will in turn affect biochemical reactions and, together 
with differences in rates of biological uptake, the distribution of nutrients (Figures 2.2 and 2.3b). Variation 
in some aspects of ecosystem structure along the LICC may be approximately linear, such as with water col-
umn stability or redox potential. Others may involve step changes, as with the change in mixing depth (zm) 
and euphotic depth (zeu) among lakes with or without ice (Figure 2.3b), or changes in secondary production 
fueled by increased phytoplankton biomass in lakes with clear ice compared to lakes with ice and snow 
(Figure 2.3c). Although heterotrophic microbial processes will continue across the entire lake ice continuum, 
there will be fundamental differences in microbial metabolism and community composition under aerobic 
versus anaerobic conditions, as a function of complex interactions among water temperature, organic sub-
strate, nutrient, and light availability (Dillon et al., 2020; Tran et al., 2018; Vigneron et al., 2019). We predict 
that the importance of microbial production for sustaining food webs will be highest under conditions where 
ice and snow persist and decline with increasing energy inputs and mixing along the LICC (Figure 2.3c), 

Figure 1. Hysteresis patterns of average annual light and connectivity conditions in a given lake under (a) Historical & 
Current Lake Seasonality and (b) Future Lake Trajectories under Climate Warming as lakes experience a loss of snow and ice 
cover with reductions in the duration of winter. The shifts in seasonality further alters the lake temperature regime, reducing 
the period of colder temperatures (blue) and prolonging warmer conditions (yellow-orange-red). Lake thermal regimes and 
the responses of individual lakes to climate warming will in part depend on factors such as lake depth, morphometry, and 
water clarity.
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but recognize other factors, such as increased lability of dissolved organic matter (DOM) from microbial 
or phytoplankton production, could mediate this general pattern. Likewise, we predict an increase in het-
erotrophic, chemolithotrophic, phagotrophic, or mixotrophic strategies among algae and microbes along a 
gradient of decreasing light (Özkundakci et al., 2016; Rautio et al., 2011). Among higher trophic levels, we 
expect increased light under clear ice or no ice conditions to benefit zooplankton, benthic organisms, and fish 
due to increased primary production and visual prey detection (Varpe et al., 2015). Higher rates of secondary 
production and foraging success are expected to increase the number and strength of trophic linkages within 
food webs (Figures 2.3a and 2.3c; Perga et al., 2020).

Figure 2. Lake Ice Continuum Concept: framework for understanding how conditions vary along a continuum of energy inputs mediated by winter climate, conditions 
mediated by ice, and snow in a representative mesotrophic temperate lake of moderate size and depth, with at least one annual full mixing. (1) We highlight how lake 
ecosystem dynamics change when winter ice cover is (a) snow-covered (dotted gray), (b) clear (light blue), or (c) absent (dark blue). Moving across a continuum of 
winter energetic constraints imposed by variation in ice and snow, lakes will experience increased inputs of energy and allochthonous material from the atmosphere and 
the surrounding landscape. Increasing energy inputs into the lakes will destabilize the water column (arrows and swirls) and affect the distribution of gases, particles, 
and heat. Also, light penetration will deepen as lake ice becomes clearer or completely disappears (yellow arrows). (2) Across the continuum, we show vertical shifts 
in the following variables: (a) mixing depth (zm), (b) temperature (Temp), (c) depth of the photic zone (zeu), (d) photosynthetically active radiation (PAR), (e) dissolved 
oxygen saturation (DO), (f) chlorophyll-a (chl-a), (g) pH, (h) greenhouse gases (GHGs), (j) specific conductance (SC), (k) total phosphorus (TP), (l) nitrate (NO3), and 
(m) ammonium (NH4). (3) We show (a) primary, (b) physical and chemical, and (c) biological responses along the continuum of winter conditions. Increasing width of 
wedges suggests an increase in response variable and wedge color corresponds to the shift along the continuum of winter conditions.
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3. Ecosystem Dynamics Along the Lake Ice Continuum
To illustrate the LICC, we examine three possible winter conditions along the lake ice continuum, which differ 
in energetic constraints: (a) lake ice with snow cover (constraints to solar radiation penetration, wind-mixing and 
atmospheric/landscape exchanges), (b) clear ice with no snow (more solar radiation inputs, but constraints to 
wind-mixing and atmospheric/landscape exchanges), and (c) no ice (all constraints lifted, Figure 2). For each of 
these scenarios, we characterize the dominant physical processes and synthesize what is known about how differ-
ences in energetics affect chemical and biological dynamics. While our discussion is categorical, individual lake 
winter conditions along the continuum may vary intra- and inter-annually (Beall et al., 2015; Prowse & Stephen-
son, 1986). For example, ice can form and melt multiple times, snowfall can accumulate or be swept clear of lake 
ice by winds, ice quality can change throughout the winter, and the duration of snow-covered ice versus clear ice 
may vary among lakes and years-all affecting surface albedo and ecosystem energetics. Consequently, conditions 
of individual lakes will depend on where they fall along the continuum in ice cover and snow cover through time 
within any given winter, or through multiple winters across years (Beall et al., 2015; Bruesewitz et al., 2015).

The LICC may be applied to any lake that experiences annual to seasonal periods of ice-cover. Although we 
describe the LICC as it applies to a representative lake (i.e., mesotrophic lake of moderate size and depth that is 
ice-free for some period of the year, mixing at least once; Figure 2), individual lake responses to changing winter 
conditions may be further affected by lake-specific characteristics such as trophic state or morphometry. For ex-
ample, lake trophic state or lake size may interact with the lake ice continuum to mediate energy fluxes into lakes, 
affecting sediment heat fluxes and mixing, differentially fueling pelagic or benthic production, and subsequently 
influencing biotic responses and the fate of winter production within lake food webs. For this reason, in addition 
to our discussion of these three scenarios along the lake ice continuum, we present case studies from lakes that 
vary in size and trophic state, and explore how they deviate from expectations based on the LICC framework. 
Such empirical tests will be an important aspect of evaluating the applicability of the concepts underlying the 
LICC and predicting how individual lakes may respond to climate change. Ultimately, we hope that this concep-

Box 1: Responses to intra-annual variation in snow cover in Lake Simoncouche
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tual model will be used to generate predictions and testable hypotheses to advance our understanding of winter 
limnology, and we encourage researchers to apply this framework across a spectrum of lakes.

3.1. Lake Ice With Snow Cover

When snow is present on ice, the lake environment has limited light availability and a stable water column. Snow 
on ice both increases albedo and limits transmission of solar radiation into the water column (Figure 2.1a). Mix-
ing is limited to convective processes from sediment heat flux and minor turbulence at the surface due to internal 
waves from ice deformation by strain or wind stress. Inverse stratification persists (Figures 2.2b and 2.3b), with 
upward solute distribution by diffusion. Low light availability restricts the chlorophyll maximum to near the 
ice-water interface, further contributing to strong oxygen, redox, pH, and other biogeochemical gradients (Fig-

Box 2: Responses to clear ice and ice with snow in Lake Mendota
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ure 2.2). Rates of both primary and secondary production are low, and microbial activity is expected to dominate, 
including feedback through the microbial loop (Figure 2.3c). However, there remain open questions regarding the 
role of the basal food web in subsidizing higher trophic levels during winter and across seasons.

Snow on ice reduces transmission of solar radiation, contributing to a stable inverse stratification (Figure 2.2b). 
The extent to which ice and snow reduce solar radiation depends in large part on the thickness of the snow and, 
to a lesser extent, the quality of the ice. Snow can reduce the transmissivity of light into lakes by over an order of 
magnitude (Box 1). Albedo can reach 80%–90% with just 5 cm of snow depth (Jakkila et al., 2009), and attenu-
ation of remaining light by snow leads to higher transmissivity in the low-energy 500–600 nm range (Leppäran-
ta, 2015; Perovich, 2007). In areas with heavy snowfall, the weight of snow can push lake ice into surface waters 
where it freezes as a slushy snow-ice matrix, further decreasing light penetration (Leppäranta, 2015; Melack 
et al., 2020). Because radiatively driven convective mixing near the surface is low, the majority of heat flux would 
come from heat stored in the sediments (Figure 2.1a). Such sediment heat fluxes can reach up to 5 W m−2 (Lik-

Box 3: Cross-seasonal linkages in years with cold, ice-covered winter, and warmer winter with 
no ice cover in Lake Stechlin
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ens & Ragotzkie, 1965; Malm, 1998), and can initiate density currents that flow downslope to the deepest part 
of the lake or reach neutral buoyancy (MacIntyre et al., 2018; Mortimer & Mackereth, 1958). Downslope flows 
can establish central upwelling and circulation cells with rates up to 10−5 mm s−1 that persist until the sediment 
temperatures equilibrate with the water column (Kirillin et al., 2012). During the earlier phases of winter, sedi-
ment heat fluxes can be the main driver of mixing, depending upon lake depth and volume (Figure 2.1a; Jansen 
et al., 2021; MacIntyre et al., 2018).

Reduced light availability also depresses primary production and algal biomass, and respiration and decompo-
sition are dominant (Figures 2.2f and 2.3c). In general, primary production is constrained to just below lake ice 
or shallow littoral zones (Marchand, 1987). However, depending upon light availability, chlorophyll-a maxima 
may not be immediately at the surface (e.g., Box 2). Considering that photosynthesis reaches saturation at lower 
irradiance at low temperatures, biochemical reactions may not be able to keep up with higher light intensity near 
the ice surface (Davison, 1991; Falkowski & Raven, 2007). While adaptations (e.g., increased concentration of 
enzymes, changing pigment composition and quantity) help phytoplankton cope with low-light and low-temper-
ature conditions, we expect that snow-covered lakes will generally be net heterotrophic, as confirmed by oxygen 
depletion throughout the water column in many lakes (e.g., Brentrup et al., 2020; Catalan, 1992). The magnitude 
of heterotrophy is influenced by lake trophic status and catchment characteristics that regulate external carbon 
loads (Brentrup et al., 2020; Roiha et al., 2015). With primary production limited, the role of the microbial loop in 
transferring resources to higher trophic levels will be more prominent (Stockner & Porter, 1988). Mineralization 
may be an important process, particularly in smaller and more productive lakes where organic matter accumulates 
in the summer (Rabaey et al., 2021). However, there can be large differences in overwinter oxygen demand and 
extent of anoxia depending on water clarity and the relative contribution from pelagic and benthic production 
(Rabaey et al., 2021).

Together, stratification and limited oxygen production influence biogeochemical gradients. Snow covered lakes 
have strong gradients in dissolved oxygen (Figure 2.2e; Catalan, 1992), as well as vertical changes in pH (Fig-
ure 2.2g) and the concentrations and composition of DOM (Gonsior et al., 2013; Rue et al., 2019), greenhouse 
gases (GHGs; Figure 2.2h; Denfeld et al., 2018), nutrients, and other solutes (Figures 2.2j–2.2m; Cavaliere & 
Baulch, 2018, 2020; Joung et al., 2017; Rue et al., 2019). Oxygen consumption under ice is strongly influenced 
by transparency of the ice and snow (Granados et al., 2020), and these redox gradients facilitate microbial-driven 
redox reactions (Figure 2.3c), such as ammonification, nitrification (Cavaliere & Baulch, 2019; Powers, Baulch, 
et al., 2017), denitrification (Cavaliere & Baulch, 2018), sulfate reduction (Urban et al., 1994) and sulfide ox-
idation, organo-sulfogenesis (Rue et  al.,  2019), ferrotrophy, methanogenesis, and methanotrophy (Vigneron 
et al., 2019). Under-ice supersaturation of nitrogen gas and N2O, both the products of denitrification and anam-
mox (anaerobic ammonium [NH4] oxidation), suggest that concentrations of N (both NO3 and NH4) could be con-
strained by these microbial processes (Cavaliere & Baulch, 2018; Loeks-Johnson & Cotner, 2020). Low light and 
the persistence of stable stratification might together explain why phytoplankton communities are dominated by 
mixotrophic and motile forms under ice (Bertilsson et al., 2013; McKnight et al., 2000; Özkundakci et al., 2016; 
Pennak, 1968), which facilitates the acquisition of resources in a spatially or temporally heterogeneous environ-
ment. Mixotrophs can have a two-fold advantage in ice covered lakes—first, they are usually motile, hence, they 
can actively adjust their position within the water column and access to light, and second, they can supplement 
phototrophy with organic carbon sources (bacteria, DOM) under resource limitation (McKnight et al., 1993; Rue 
et al., 2019; Stoecker, 1998). By consuming and exuding organic material, heterotrophic organisms contribute 
to the internal loading of nutrient and carbon pools, subsidizing the under-ice food web (Fitch et al., 2018; Rue 
et al., 2019; Stockner & Porter, 1988; Thompson & Cotner, 2018, 2020).

Lower primary production under ice with snow cover has a range of implications for higher trophic levels. Zo-
oplankton and zoobenthos have lower production rates at lower temperatures (Figure 2.3c; Shuter & Ing, 1997; 
Sutcliffe et al., 1981; Strayer, 2009), and may be supported primarily by mixotrophs (Perga et al., 2020) and 
microbial production (Bastviken et al., 2003). Zooplankton secondary or tertiary winter production peaks are re-
stricted to early winter (Beaver et al., 2018; Grosbois et al., 2020). Most cladocerans and some copepods produce 
resting eggs and disappear from the water column, while other copepods are inactive through the winter and oth-
ers stay active with the help of accumulated fat reserves (Schneider et al., 2017). Fat reserves can also be allocated 
to egg production in late winter immediately prior to the increasing light levels and the return of phytoplankton 
production (Schneider et al., 2017). The profundal zoobenthos has been shown to experience a mid-winter pro-
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ductivity minimum (Dermott et al., 1977; Jónasson, 1975), which is attributed to reduced inputs of sedimenting 
pelagic production more than to low temperatures, since annual temperature variation in profundal sediments is 
usually low in stratified lakes. Since profundal organisms exhibit diverse feeding strategies, they are differentially 
affected by the reduced winter supply of sedimenting organic matter. Littoral zoobenthos show a larger seasonal 
drop in production compared to profundal zoobenthos, since they experience both a sharper reduction in tem-
perature and a decrease in their food base due to suppression of benthic primary production (Jónasson, 1996).

Fish have a diversity of winter coping strategies to survive cold, dark, and limited prey conditions (Shuter 
et al., 2012). Winter-inactive fish experience dramatic energy savings from reduced swimming and foraging, and 
can survive winter with little to no feeding (Speers-Roesch et al., 2018). Winter-active fish possess the physiolog-
ical capacity to sustain foraging when it is cold and dark (Blanchfield et al., 2009; Helland et al., 2011), although 
activity rates can decline in winter in some species (Watson et al., 2019). Variation in winter activity also exists 
among individuals of the same species (Auer et al., 2016). For example, smaller-bodied individuals are thought 
to be more susceptible to overwinter mortality (Byström et al., 2006; Hurst, 2007). The local environment also 
plays a role for fish activity and survival over winter. Widespread and persistent hypoxic and anoxic conditions in 
some snow and ice-covered lakes can result in a higher probability of fish-kills (Barica & Mathias, 1979; Green-
bank, 1945). In other lakes, fish can behaviorally cope with and survive winter by moving to available habitats 
with more suitable temperature, oxygen, and light conditions (Blanchfield et al., 2009; Magnuson et al., 1985).

3.2. Clear Ice Cover With No Snow

Clear ice cover without any snow allows for increased transmittance of solar radiation in the water column. The 
extent of the differences between clear ice and snow + ice conditions will depend on the optical properties and 
thickness of the ice. Overall higher input of solar radiation under clear ice generates convective mixing, which 
leads to relatively deeper mixing and euphotic zones (Figures 2.1b, 2.2a, and 2.2c). These conditions allow for 
the formation of chlorophyll-a maxima in the euphotic zone (Figures 2.2f, 4 and 5), leading to higher primary 
production and phytoplankton biomass (Figure 2.3c). Higher resource availability will also stimulate secondary 
production (Figure 2.3c). While conditions in the upper water column will likely be oxygen-saturated, anoxia can 
develop in the bottom waters, exacerbating gradients of redox and solutes (Figure 2.2). Lakes that experience lit-
tle or no snow may be expected to have either shorter or longer ice duration than lakes that remain snow-covered, 
depending on variation in ice-structure and thickness—a pattern that could be explored across climate gradients.

The absence of snow cover increases the transmittance of solar radiation to the water column (Figures 3 and 4), 
but the extent and intensity of the heat flux depends on the quality and thickness of the ice. Ice that has undergone 
freeze-thaw cycles, includes debris, snow, or gas bubbles will reflect or scatter more downwelling radiation and 
have lower transmission than clear, congelation ice, which can be extremely transparent to many wavelengths 
(Leppäranta, 2015; Warren, 2019). It is common for large lakes with long fetches to be snow free at many points 
during the winter due to blowing snow (Agbeti & Smon, 1995). Without the insulating effect of snow, ice thick-
ness is more dependent on local climate forcing (Gould & Jeffries, 2005), potentially affecting light penetration. 
The overall lower albedo of ice compared to snow increases convective mixing through radiative gain (Fig-
ure 2.1b), decreasing water column stability with measured mixing rates of up to 7 mm s−1 (Bouffard et al., 2016; 
Kirillin et al., 2012).

Radiative inputs through clear ice allow for higher primary production than when there is snow on the ice (Fig-
ure 2.3c). The primary production peak will extend deeper (Figures 2.2f, 4, and 5) due to higher light intensity 
and convective mixing. Under clear-ice conditions, phytoplankton biomass may be comparable to or exceed 
summer concentrations (Pasztaleniec & Lenard,  2008; Twiss et  al.,  2012; Vörös et  al.,  2009). Compared to 
winters when lake ice is covered with snow, non-motile algae are often abundant under clear ice and massive 
blooms of large diatoms have been frequently reported from large lakes experiencing such conditions (Beall 
et al., 2015; Bondarenko et al., 2006; Kerfoot et al., 2010). Moreover, clear ice itself can be a productive habitat 
for algae and bacteria (Bondarenko et al., 2012). While radiatively driven convective mixing can help non-mo-
tile algae to remain in suspension and increase their access to deeper nutrients (Katz et al., 2015; Kelley, 1997), 
it can also compromise their access to light if the mixing depth is too deep (Diehl et al., 2002a, 2000b). Small 
phytoplankton taxa with traits such as motility and mixotrophy appear to be successful under clear ice or ice and 
snow (Butts & Carrick, 2017; Callieri et al., 2006; Özkundakci et al., 2016). Small cell size allows for efficient 
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resource uptake, fast growth, and minimizes sinking rates, but these species generally have low grazing resistance 
(Chisholm, 1992; Litchman & Klausmeier, 2008).

Differences between surface and deeper water biogeochemistry will be accentuated under clear ice compared to 
ice with snow. Greater primary production and convective mixing would result in higher dissolved oxygen in the 
upper water column (Yang et al., 2017, 2020), while the hypolimnion may be more oxygen-depleted (Figures 2.2e 
and 4), possibly as a result of sinking autochthonous carbon produced during the winter, in addition to legacy or 
refractory sources of organic matter. Accordingly, we expect that there would be strong differences in net metab-
olism between the surface and deep waters. However, in more shallow lakes where the photic zone could extend 
to the bottom, these gradients would likely shift toward the sediment-water interface. The more oxic environment 
found under clear ice will enhance nitrification—with NH4 oxidation being a substantial sink for oxygen where 
NH4 is abundant (Figure 2.2l; Cavaliere & Baulch, 2019; Massé et al., 2019; Powers, Baulch, et al., 2017). As 
a consequence of nitrification and phytoplankton uptake, NH4 concentrations may be lower within the euphotic 
zone (Figure 2.2m). Denitrifying bacteria may take advantage of accumulated organic matter and nitrate (NO3) 
(Cavaliere & Baulch, 2018; Palacin-Lizarbe et al., 2018). Increased nitrification rates and nitrate accumulation 
could also affect phytoplankton community structure. While some phytoplankton preferentially take up NH4—
competing with nitrifiers for that substrate—diatoms have preferential uptake of NO3 (Lomas & Glibert, 1999). 
Uptake and assimilation rates of NO3 are high at low temperatures (Glibert et al., 2016); therefore, diatom growth 
could be enhanced if light conditions are favorable.

Given the higher rates of biogenic oxygen production in clear ice lakes, mineralization of organic matter may 
be more rapid, affecting nutrient availability, DOM lability (Rue et  al.,  2019), and GHG production (Jansen 
et al., 2019) during the winter and into spring (Tõnno et al., 2005). Subsequent mineralization of both settled 
particulate organic matter (POM) and DOM in bottom anoxic waters during winter may regenerate nutrient 
pools, as well as replenish reduced nitrogen species (Figure 2.2m) and phosphorus (Figure 2.2k; Cavaliere & 
Baulch, 2020; Rue et al., 2019). The flux of P to the upper water column is also influenced by redox conditions at 
the sediment-water interface (Nürnberg et al., 2013), so if the convectively mixed layer extends to lake sediments 
and keeps them oxygenated, sediment P fluxes may remain low (Markelov et al., 2019).

Phytoplankton productivity under clear ice may stimulate production at other trophic levels, even if the strong 
temperature dependence of zooplankton, zoobenthos and fish production keeps their overall growth rates low 
(Figure 2.3c; Bramm et al., 2009; Bertilsson et al., 2013; Sommer et al., 2012). For example, some copepods 
and, less commonly, cladocerans are abundant during winter and have reproductive strategies that enable them 
to rapidly respond to increasing phytoplankton production (Beaver et  al.,  2018). Active zooplankton grazing 
may enhance nutrient recycling, and also interact with phytoplankton by reducing their biomass, and changing 
their community structure, since taxa such as small diatoms and cryptomonads are preferentially grazed (Hry-
cik & Stockwell, 2020). Senescent phytoplankton biomass can stimulate production of microbes (Bižić-Ionescu 
et al., 2014) and profundal zoobenthos (Jónasson, 1975). Fish that remain active during the winter may experi-
ence increased predation rates or foraging efficiency because of higher light levels (Fullerton et al., 2000; Garvey 
et al., 2004; Varpe et al., 2015). Ice without snow could therefore support greater fish biomass compared to ice 
with snow conditions. Overall, increased light leads to greater biomass at the base of the food web, but further 
research is needed to understand how temperature regulated metabolic rates or shifts in phytoplankton commu-
nity structure might restrict biomass to be transferred to the higher trophic levels (Figure 2.3a; Vad et al., 2020).

3.3. Loss of Winter Lake Ice Cover

In ice-free winters (Figure 2.1c), lakes experience constant interaction with the atmosphere and potentially great-
er exogenous inputs from the landscape due to precipitation falling mainly as rain (Figure 2.3b). Under these 
conditions, most of the incoming solar radiation is transmitted and absorbed by the water column, increasing 
zeu (Figures 2.1c and 2.2d), which could contribute to higher primary production. However, this increase could 
be offset by greater wind-driven mixing (Figure 2.1c), which may deepen the mixing zone (zm, Figure 2.2a) 
and could limit light availability depending on zm/zeu (Figure 2.3b). The increased mixing would also lead to a 
more uniform distribution of gases, ions, and nutrients throughout the water column (Figures 2.2 and 2.3a). Un-
derstanding how the frequency of ice-free winters shifts with regional and global climate change represents an 
important future research goal.
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The loss of winter ice cover has profound implications for lake ecosystems through exposure to the atmosphere 
and wind energy. In general, wind-driven turbulence is expected to lead to greater mixing (Figures 2.1c and 2.2a), 
and the consequences of this mixing for thermal regimes will depend on regional and local factors affecting the 
energy budget (Box 3; Woolway & Merchant, 2019). Shallower lakes may mix continuously, but in deeper lakes, 
full mixing of the water column may be either substantially delayed (Box 3), or lakes may not fully turnover as 
a result of insufficient winter cooling and/or high solute concentrations (Box 3; Woolway et al., 2020). If full 
turnover during winter is completely halted, redistribution of gases and nutrients will be limited, resulting in 
persistent anoxia in bottom waters and resource-limitation in the upper water column (Lau et al., 2020; Yankova 
et al., 2017). Mixing will reduce the strength of vertical physio-chemical gradients (Figure 2.3a) and increase 
the supply of dissolved oxygen to the bottom waters (Figure 2.2e). Coupled with higher lakewater temperatures 
(Figures 2.2b and 5; Flicker et al., 2017), higher oxygen availability may lead to reduced carbon burial efficiency, 
and enhanced mineralization rates of more readily degradable organic matter, potentially increasing refractive 
carbon pools (Gudasz et al., 2010, 2015; Sobek et al., 2009). A well-mixed water column also has the potential 
to redistribute sediments through the water column, with implications for turbidity, nutrients, and trace metals 
(Evans, 1994). Enhanced resuspension of sediments could also affect community structure and quality of prey 
by lifting plankton resting cysts from the sediments, inoculating the water column (e.g., akinetes of cyanobac-
teria and zooplankton eggs; Cirés et al., 2013; Özkundakci et al., 2016). Loss of ice and increased exposure to 
the atmosphere could also contribute to increased evaporation, gas exchange, and atmospheric deposition (Arp 
et al., 2015; Xiao et al., 2018).

Increased connectivity of lakes with their watersheds during ice-free winters (Figure 2.1c) will likely result in a 
change in the timing and/or magnitude of exogenous inputs of carbon and nutrients. The amount and composition 
of the input will depend on the local climate, precipitation patterns, hydrology, watershed size, and the type of 
land cover surrounding the lakes (Casson et al., 2019; Solomon et al., 2015). Similar terrestrial loading may also 
occur in ice-covered lakes if soils do not freeze during the winter (Melack et al., 2020). We expect that delivery 
of terrestrial inputs into ice-free lakes during winter will be primarily mediated by the frequency of rain and 
freeze-thaw events. While there is a scarcity of evidence of lake responses to open-water winters, warmer winters 
with more frequent rain events are associated with higher riverine dissolved organic carbon and nutrient exports 
(Huntington et al., 2016; Rattan et al., 2017). Increased runoff and loading of sediments, dissolved nutrients, and 
organic matter during ice-free winters could alter redox potential (Jansen et al., 2019) and exacerbate increasing 
turbidity, nutrient enrichment and/or browning of lakes (Cade-Menun et al., 2013; Box 3). Thus, net lake me-
tabolism in winter under open water conditions may be more strongly influenced by landscape features. While 
decreasing water clarity with associated effects for stratification patterns, lake metabolism, and food webs has 
been documented during the summer (Hayden et al., 2019; Leech et al., 2018; Staehr et al., 2010), how enhanced 
connectivity to the landscape during winter will affect lake responses requires further exploration.

It is tempting to conclude that lower albedo and increased radiative inputs (Figure 2.2d) in winter ice-free lakes 
would result in the highest rates of primary production along the LICC. However, increased mixing will likely 
reduce residence time of phytoplankton within the euphotic zone, leading to light limitation and lower photosyn-
thetic activity (higher zm/zeu, Figures 2.2a, 2.2c, 2.3b, 2.3c, and 3; Diehl et al., 2002b; Vincent, 1983). Moreover, 
increased mixing might also result in higher turbidity (Beall et al., 2015), reducing light availability and depth 
of the photic zone (Box 3). In Lake Erie, a shift from near complete ice coverage to largely open-water winter 
conditions led to a >70% decline in mid-February chlorophyll-a (Beall et al., 2015). These stark differences in 
chlorophyll-a under differing winter conditions persisted into spring (Beall et al., 2015). Similarly, spring dia-
tom production in Tiefer See, Germany, was low after winters with low ice cover and prolonged mixing periods 
(Kienel et al., 2017). During ice-free winters, the phytoplankton community may shift toward one dominated by 
non-motile forms capable of withstanding fluctuating light in the mixed water column (e.g., diatoms and some 
cyanobacteria; Litchman, 1998; Shatwell et al., 2008); however, the distribution of their biomass will depend on 
the frequency, intensity, and depth of the mixing (Box 3; Huisman et al., 1999). Consequently, lake metabolic 
balance will also depend on mixing dynamics and factors controlling the depth of the euphotic zone, such as 
lake morphometry, water clarity, and rates of watershed loading (Obrador et al., 2014; Olson et al., 2020; Kelly 
et al., 2018).

Secondary production of invertebrates is expected to increase during winter under ice-free conditions as a result 
of the relatively higher temperatures, especially in the upper water column, and resulting increased food availa-
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bility (Figure 2.3c); while primary production may be lower compared to clear ice conditions, it will be higher 
relative to snow-covered winters (Figure 2.3c). Massive swarms of reproducing cladocerans have been observed 
at water temperatures below 10 °C in Lake Mead (Beaver et al., 2018). Similarly, cladocerans can be abundant 
in Lake Washington, which remains ice-free during winters, with water temperatures typically ranging between 
6.7 and 9.4 °C (Hampton et al., 2006). This suggests that an increase in water temperature by even a few degrees 
could lead to substantial changes in zooplankton production. Profundal benthic organisms could also benefit 
from ice loss due to a combination of increased temperatures and increased supply of food to filter feeders and 
surface-dwelling detritivores by deeper mixing (Rowe et al., 2017; Vanderploeg et al., 2010). Similarly, littoral 
zoobenthos production will likely be stimulated by littoral primary production that is expected to increase in 
response to higher light availability. Although rates of fish foraging and production could increase (Figure 2.3c; 
Varpe et al., 2015), foraging success and fish survival may decline if visibility is reduced as a result of wind driv-
en wave action and shoreline erosion, resuspension of sediments, or increased turbidity (Hedström et al., 2016). 
Warmer spring temperatures might inhibit successful foraging of cold-water fish in productive, littoral zones 
(Caldwell, Chandra, Feher, et al., 2020; Guzzo & Blanchfield, 2017; Guzzo et al., 2017; Jansen & Hesslein, 2004) 
and decrease juvenile abundance (Farmer et al., 2015). While these examples show responses to earlier spring 
warming, not the lack of ice per se, these studies stress the importance of considering how fish behavior and for-
aging success during winters with no ice carries over, affecting growth and reproduction in subsequent seasons.

Considering the substantial impact of ice cover on lake ecosystems, a shift toward year-round open-water condi-
tions will affect habitat availability and likely alter the structure of biological communities. Differential responses 
among longer-lived organisms to cold, harsh conditions during winter contribute to stabilization of food webs 
and maintenance of diversity (Humphries et al., 2017; McMeans et al., 2015). For example, coexistence among 
fish with different thermal preferences is likely mediated by seasonal differences in habitat use, behavior, and 
fitness (Farmer et al., 2015; McMeans et al., 2020). Therefore, the loss of cold winters and resulting seasonal 
homogenization can affect population dynamics (e.g., lower winter mortality), resource use, and species inter-
actions—having cascading effects on ecosystem function. Similarly, we could expect that homogenization of 
vertical gradients under full winter mixing may affect the structure of microbial communities taking advantage of 
spatial variability, for example in redox conditions (Figure 2.3a; Schütte et al., 2016). Finally, Timoshkin (2001) 
has called winter ice the “second bottom," referring to the idea that ice creates a stable surface where growth 
can occur in the photic zone. Therefore, the disappearance of ice cover itself represents a loss of habitat for 
cold-adapted microorganisms living attached to (e.g., diatoms; Bondarenko et al., 2006), inside (e.g., bacteria; 
Santibáñez et al., 2019), or on top of the ice cover (e.g., flagellates and ciliates; Felip et al., 1999). Taken together, 
we expect that the loss of ice cover and cold conditions during winter will have consequences for coexistence of 
species and annual patterns of biodiversity.

4. Implications of Declining Ice Duration
Our conceptual framework highlights the wide range of lake responses to ongoing climate-driven changes in 
winter lake ice cover. The shorter ice duration observed throughout the world has manifested as both later freeze 
and earlier ice breakup dates, strongly affected by temperatures in the months preceding these events (Magnu-
son, 2000; Shatwell et al., 2019). Such temporal connections serve as a reminder of the need to “close the loop” 
and understand the role of winter in the aquatic annual cycle (Salonen et al., 2009). For example, earlier ice-out 
will affect available light levels in the water, even though both day length and angle of incidence are lower earlier 
in the year (Preston et al., 2016), and autocorrelation of water temperatures means that warmer winter temper-
atures will often beget warmer spring temperatures (Box 3; Adrian et al., 1999; Caldwell, Chandra, Albright, 
et al., 2020). The accumulation, depletion or transformation of nutrient and carbon pools under ice (e.g., Cav-
aliere & Baulch, 2020; Powers, Labou, et al., 2017; Rue et al., 2019) will set the stage for early spring primary 
producers. For example, high concentrations of chlorophyll-a during winter were associated with low concentra-
tion of chlorophyll-a during the following summer, possibly due to the reduction of the pelagic nutrient pool as a 
result of higher winter productivity (North et al., 2014).

In years with shorter winters, the phenology of important events can be altered. For example, lakes that typically 
receive large influxes of spring melt water will likely receive that water, often rich in nutrients, earlier in the 
year (Sadro et al., 2018). Also, linkages to the landscape may persist for a longer portion of the year, delivering 
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allochthonous inputs (Haei et al., 2013) and potentially releasing GHGs (Denfeld et al., 2018) more consistently 
than as a pulse (Lake, 2000). The degree to which increased landscape connectivity influences lake processes 
both during winter and across seasons will depend upon lake (e.g., residence time), local (e.g., land use and wa-
tershed:lake area), and regional (e.g., climate) attributes. These interacting processes may also increase or buffer 
susceptibility of lakes to changes in trophic status, as well as the effects of eutrophication and humification on 
nutrient cycles and energy transfer efficiency of food webs therein (Karpowicz et al., 2020). However, the impact 
on biogeochemical processes and biological communities through the annual cycle (Missaghi et al., 2017; Orihel 
et al., 2017) will also largely depend on how shorter winters affect the duration and intensity of spring mixing 
given their connection with hypolimnetic temperatures and oxygen depletion (Dugan, 2021a; North et al., 2014).

As more lakes move toward ice-free winters, radical changes in ecosystem processes will undoubtedly be ob-
served for many lakes (Figures 2 and 5). The complexity of nutrient influx, accumulation, and processing under 
changing winter conditions has uncertain implications for phytoplankton composition and biomass both under 
ice and at spring melt, as highly varied relationships of nutrients and ice duration have now been observed across 
systems. In turn, conditions that favor either high winter algal biomass or high spring algal biomass are expected 
to fuel zooplankton growth that can be transferred to fish and benthos, particularly under warming conditions. 
However, shifts in winter phenology may also result in mismatches among trophic levels (Thackeray et al., 2010; 
Weyhenmeyer et al., 2008) and systems susceptible to harmful algal blooms could experience further water qual-
ity problems associated with enhanced growth of cyanobacteria (Anneville et al., 2015; Ho & Michalak, 2019). 
“Winners” and “losers” will emerge across all trophic levels (Dornelas et al., 2019) given that annual patterns of 
biodiversity are, in part, maintained by the specialized niches created by contrasts between winter and summer 
(McMeans et al., 2020; Shatwell et al., 2008). Loss of winter habitat will reduce diversity and abundance of 
cold stenotherms or organisms otherwise specialized for growing under ice, such as those attached to ice (e.g., 
Bondarenko et al., 2006). This phenomenon is already evident among fish, such that major changes in winter 
duration would be expected to alter community composition throughout the year (McMeans et al., 2020; Shuter 
et al., 2016), with the potential for cascading ecological effects.

5. Conclusions
Global change is driving ice-covered lakes toward not only warmer annual average temperatures, but also re-
duced, intermittent or no winter ice cover. Concurrently, these lakes are experiencing shifts in the timing and 
intensity of precipitation, as well as the proportion arriving to lakes as rain or snow. For lakes that experience 
ice cover, it is well understood that ice duration, thickness, clarity, and snow cover together influence physical, 
chemical, and biological processes. The open questions concern the exact nature of these complex, interacting 
effects in any lake ecosystem and the repercussions of winter changes throughout the year. We expect seasonal 
linkages resulting from changing winter conditions to vary within individual lakes, affected by an assortment 
of factors including the timing and magnitude of inflowing melt waters, lake size and morphometry, and land-
scape variation from the continental to the local scale. At this stage in the development of winter limnology, we 
see an essential need to better articulate the elements of winter that appear generalizable enough to provide a 
useful research paradigm, both to advance fundamental knowledge and to anticipate future ecosystem changes. 
Accordingly, we propose the LICC as an organizing framework for future research. Conceptual frameworks have 
been vital for advancing our understanding of ecosystem processes and how they change across scales (Raymond 
et al., 2016; Seastedt et al., 2004; Vannote et al., 1980; Ward & Stanford, 1982). As such, the LICC contributes 
a new approach for characterizing lakes under a continuum of winter conditions that mediate energy fluxes into 
lakes in a landscape context, which can be used as a tool to test our knowledge of mechanistic linkages and eco-
system responses to globally changing winters. The pace of worldwide lake warming, decreasing ice duration, 
and altered precipitation patterns lends imperative to the establishment of this framework for addressing key 
questions in winter limnology and advancing discovery while ice still dominates the world's lakes.

Data Availability Statement
Lake Mendota monitoring data and figure code are available in the Zenodo open-access data repository supported 
by the Conseil Européen pour la Recherche Nucléaire (https://doi.org/10.5281/zenodo.4812868). Lake Stechlin 
monitoring data, figure code, and photo are available from the Freshwater Research and Environmental Database 

https://doi.org/10.5281/zenodo.4812868
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(FRED) operated by the Leibniz Institute of Freshwater Ecology and Inland Fisheries (https://doi.org/10.18728/
igb-fred-576.0). The Lake Simoncouche data monitoring data are available from the Centre for Northern Studies 
data repository Nordicana D (https://doi.org/10.5885/45717CE-5A9BFDF1C9064936).
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