
1.  Introduction
Dissolved oxygen (DO) is essential for maintaining healthy aquatic ecosystems, thus, the depletion of DO 
in lakes remains an important research topic (Kalff,  2002). DO depletion can have significant implica-
tions across trophic levels, from increasing harmful algal blooms (HABs) to reducing fish habitat (Diaz 
& Rosenberg, 2008). The main sinks of DO in aquatic ecosystems include biological and biogeochemical 
processes occurring in both the water column and at the sediment–water interface (Bouffard et al., 2013; 
Müller et al., 2012). Hypoxia in lakes and reservoirs has increased over the past century mainly as a result 
of an increased demand for DO stemming from excessive nutrient loading or eutrophication (Schindler 
et al., 2016). Ongoing changes in climate are expected to increase hypoxia in many lakes by stimulating 
rates of respiration more than primary production, and by increasing thermal stratification and reducing 
the frequency of mixing events (Adrian et al., 2009; Yvon-Durocher et al., 2010). Regardless of the mecha-
nism, extended periods of hypoxia can alter redox potential and lead to internal loading of nutrients from 
sediments (Welch & Cooke, 1995), further contributing to eutrophication, HABs, and deteriorated water 
quality. Thus, simple and cost-efficient ways of quantifying and predicting the drawdown of DO in lakes 
and reservoirs is a priority for limnologists and water managers to ensure ecosystem health and maintain 
water quality standards.

A wide variety of tools have been developed to make direct measurements of DO in aquatic ecosystems, 
ranging from the traditional Winkler titration to optical oxygen sensors. Limnologists have utilized vari-
ous approaches for quantifying DO depletion rates. These include the areal hypolimnetic oxygen demand 
(AHOD, g DO m−2 d−1), which quantifies DO depletion rates down to 2 mg L−1, and the anoxic/hypoxic 
factor (AF/HF, d season−1) which estimates the number of days that an area equal to the lake bottom is ex-
posed to anoxia/hypoxia, a proxy of the length of time that anoxia/hypoxia persists (Nürnberg, 2002). More 
recently, Matzinger et al. (2010) developed the concept of aerial hypolimnetic mineralization rates (AHM, g 
DO m−2 d−1) to include the fluxes of reduced substances (e.g., methane and ammonium) released from the 
sediments under anoxic conditions. Other current studies have successfully tested the relationship between 
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oxygen depletion and the hypolimnetic depth (Müller et al., 2012) or the phosphorus flux supply (Müller 
et al., 2019). However, all of these approaches require substantial in situ measurements of DO, and none of 
them predict the onset of hypoxia.

Numerical models represent a powerful tool to predict the long-term DO dynamics in aquatic ecosystems. 
Changes in DO are simulated using process-based biogeochemical models that parameterize photosynthe-
sis, reaeration, respiration, biochemical oxygen demand, and sediment oxygen demand. The distribution of 
DO in the domain change due to physical processes (mixing, stratification, transport), and biogeochemical 
processes. This exists for both 1-D (Rucinski et al., 2010; Schladow & Hamilton, 1997) and 3-D models (Leon 
et al., 2011; Peña et al., 2010). Both modeling approaches require significant data during the calibration and 
validation process for a specific site.

Simpler analytical models that require fewer or more easily measured input variables and minimal calibra-
tion can be of significant value. Walker (1979) tested empirical models to relate the trophic state of the lake 
with the hypolimnetic oxygen depletion rate. Robertson and Imberger  (1994) developed a simple model 
that related changes in Lake Number (LN), or the extent of mixing, to changes in the near-bottom DO con-
centrations. Given the importance of stratification on DO depletion, lake mixing dynamics modeled using 
meteorological drivers, such as the well-established net surface heat flux approach (Imberger, 1985; Mac-
Intyre et al., 2002), is also of considerable value. Computing the extent of mixing from basic meteorology 
and linking that to oxygen depletion may provide one of the simplest and most cost-effective tools to predict 
hypoxia in aquatic ecosystems.

However, most definitions and predictive tools for understanding DO depletion extend from knowledge of 
deep, monomictic and dimictic lakes (Müller et al., 2012, Table 1). Shallow polymictic lakes are still poorly 
understood and only a few studies about hypoxia have focused on them (Taranu et al., 2010). Polymictic 
lakes are highly dynamic (Table 1); subtle changes in meteorological forcing can stratify or mix these shal-
low water bodies multiple times a year (Rueda, Schladow, et  al.,  2003; Wilhelm & Adrian,  2008). Their 
large fraction of water exposed to sediments make them particularly vulnerable to internal nutrient loading 
associated with periods of anoxia/hypoxia. The excessive nutrient input may exacerbate eutrophication and 
occurrence of HABs (Orihel et al., 2017). Consequently, simple ways of predicting the onset of hypoxia in 
polymictic lakes have value both as a warning tool, which might trigger mitigation actions such as oxygen-
ation, and as means of estimating sediment release rates.

In this study, we compare predictions for the onset and duration of hypoxic events in each basin of a eu-
trophic, multibasin polymictic lake (Clear Lake, CA, USA) using three different 1-D analytical models. 
Two of these models are novel and we show that they are accurate using readily acquired input varia-
bles. Our methods provide a quick and cost-effective tool for early warning of the onset and duration of 
hypoxia.
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Name Country Maximum depth, zmax (m) Surface area, SA (km2) Reference

Lake Taihu China 3 2,338 Qin et al. (2010)

Saskatoon Lake Canada, Alberta 4 7.5 Taranu et al. (2010)

Lake Wingra USA, WI 4 1.4 Magee and Wu (2017)

Cooking Lake Canada, Alberta 4.6 36 Taranu et al. (2010)

Lake Müggelsee Germany 8 7.3 Wilhelm and Adrian (2008)

Lake Elsinore USA, CA 13 14.6 Martinez and Anderson (2013)

Upper Arm (Clear Lake) USA, CA 11 106 This study

Oaks Arm (Clear Lake) USA, CA 14 15 This study

Lower Arm (Clear Lake) USA, CA 15 30 This study

Kranji Reservoir Singapore 17 3 Yang et al. (2015)

Table 1 
List of Polymictic Eutrophic Lakes and Reservoirs Around the World and Their Characteristics
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2.  Study Site
Clear Lake, (39°00′N, 122°45′W), located in the Coastal Range of Northern 
California, USA, is a large, shallow lake with a surface area (SA) of 151 km2, 
mean depth of 8 m, and maximum depth (Zmax) of ∼15 m, depending on 
the lake water level (maximum annual changes in water surface elevation 
∼3 m). The system tends to mix several times annually, is naturally eu-
trophic, and has a multibasin bathymetry (Text S1). Three different sub-ba-
sins exist: Upper Arm, Lower Arm, and Oaks Arm (Figure 1, Table 2). The 
Upper Arm (UA) is the largest and shallowest basin, and directly receives 
>90% of the watershed runoff. A passage at the east end of the UA referred 
to as the Narrows (NR) connects it with two smaller and deeper basins. The 
Lower Arm (LA) connects to the only outlet at the southeast end of the 
lake, while the Oaks Arm (OA) is the smallest basin and extends east of the 
Narrows. The residence time of the lake is about 4.5 years (Richerson, Su-
chanek, & Why, 1994). The wind field and stratification, modulated by the 
Earth's rotation, are the main drivers of transport within individual basins 
and between them (Rueda et al., 2003, 2008). Given the long residence time 
(years) and the polymictic nature of all the basins (vertically mixes and 
re-stratifies multiple times each summer), the impact of advection between 
basins on the vertical dynamics is considered minor, and a one-dimension-
al (vertical) approach is considered adequate for what follows.

3.  Field Methods
3.1.  Meteorology

Meteorological data were obtained from seven stations installed on docks on the shoreline of Clear Lake 
(Figure 1). Here, we present data for the year spanning March 2019 to February 2020. Those stations are 
Nice (NIC), North Lakeport (NLP), Big Valley Rancheria, (BVR), Konocti Bay (KNB), Jago Bay (JGB), Buck-
ingham Point (BKP), and Clearlake Oaks (CLO). BVR was ∼200 m inland from the shoreline. Air temper-
ature, relative humidity, incoming shortwave solar radiation, precipitation, wind speed and direction were 
measured every 15 min with Davis Instruments Wireless Vantage Pro2 Plus meteorological stations. At each 
site (except BVR), we also deployed water temperature sensors (Onset Water Temp Pros with 0.2°C accura-
cy, 0.02°C resolution) ∼0.5 m below the lake surface sampling every 10 min.

3.2.  Moored Instrumentation

Time-series measurements of lake temperature and DO were recorded at seven moorings (Figure 1). We 
deployed taut-line moorings with a subsurface buoy 2–3 m below the surface starting in March 2019 and 
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Figure 1.  Bathymetry of Clear Lake, CA with contours every 2 m. Red 
circles mark the location of seven continuously measuring moorings and 
profiling sites. Blue triangles are the meteorological stations and surface 
inshore temperature loggers. Yellow squares mark the three near-surface 
offshore thermistor chains.

Inshore logger Offshore logger Linear regression coefficients R2 Subsurface Mooring
Meteorological 

station

KNB LA-S [0.99, −0.78] 0.98 LA-03 KNB

BKP NR-S [1.03, −0.76] 0.91 NR-02, UA-01 BKP

CLO NR-S [0.99, −0.80] 0.93 OA-04 BKP

NLP UA-S [1.01, −0.95] 0.87 UA-07, UA-8 NLP

NIC UA-S [1.01, −0.72] 0.95 UA-06 NIC

Note. The meteorological station upwind of the predominant wind direction for each arm is also listed.

Table 2 
Inshore and Offshore Shallow Loggers Used in the Linear Regressions to Estimate Long-Term Offshore Surface 
Temperatures From Surface Inshore Time Series, and the Subsurface Mooring Associated to Each Lake Surface Time 
Series
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here present data for the year spanning March 2019 to February 2020. Instruments were serviced every 
3–4 months. Each subsurface mooring had a set of RBR solo3T thermistors (0.002 °C accuracy, 0.0002 °C 
resolution) spaced ∼1 m throughout the water column recording water temperatures every 10 s. Moorings 
had one to three wiped DO sensors which measured every 30 s or 10 min, depending on their manufacturer. 
RBR codaT.ODO dissolved oxygen sensors or RBR-DO (accuracy 0.26 mg L−1, and resolution <0.03 mg 
L−1) sampled faster than the PME miniDOT dissolved oxygen sensors (accuracy 0.3 mg L−1, and resolution 
of 0.01 mg L−1). The three deepest moorings at each basin (LA-03, OA-04, UA-06) had two near-sediment 
RBR-DO sensors 0.5  and 2 m off the bottom with a miniDOT sensor in the epilimnion ∼4–5 m below the 
surface. Other moorings had only one RBR-DO sensor 0.5 m off the bottom. An Onset HOBO U20-001-01 
water depth sensor (accuracy 0.5 cm, and resolution of 0.21 cm) on each mooring line sampling hourly al-
lowed for the determination of the depth of each logger and the changing lake water level during the study 
period. Lake level was also monitored with a pressure transducer installed at Lakeport by the United States 
Geological Survey's (USGS) National Water Information System (NWIS) (https://waterdata.usgs.gov/ca/
nwis/uv?site_no=11450000).

3.3.  Lake Surface Temperatures

We used modified lake temperature time series from the inshore loggers adjacent to the meteorological 
stations to fill the near-surface lake temperature gap from the subsurface moorings. Due to the shallowness 
of the lake next to the docks, inshore near-surface temperatures normally exceeded the surface offshore 
temperatures. We measured near-surface offshore temperatures using arrays of thermistors installed in the 
upper 2 m of the lake water column attached to navigation markers at three locations across the lake (Fig-
ure 1, UA-S, NR-S, LA-S). Each shallow offshore array was housed inside a perforated PVC pipe suspended 
from a buoy. Onset Water Temp Pros sensors were located every 0.5 m. These shallow offshore thermistor 
chains only provided reliable data during short periods throughout our year of sampling. Therefore, we 
developed linear regression equations with the near-surface offshore being dependent on inshore temper-
atures. We used the closest shallow offshore array to regress each surface inshore time series (Table 2). On 
average, offshore lake surface temperatures were 0.72–0.95 °C colder than the inshore values (minimum 
R2 = 0.87). This correlation also held when temperatures offshore were measured with a temperature pro-
filer in the middle of each basin. We assumed linear temperature changes in depth between the modified 
surface lake temperature time series from the inshore loggers and the shallowest subsurface logger of the 
taut-line moorings.

3.4.  Profiling Data

Profiles of physico-biogeochemical properties of the lake water adjacent to the seven moorings were collect-
ed every ∼6 weeks using a Seabird SBE-19plus water quality profiler. Electrical conductivity, temperature, 
depth, chlorophyll-a, turbidity, and DO were measured. Temperature and DO time series from the mooring 
stations were intercalibrated against these profiles. We measured lake clarity using a Secchi disk, and photo-
synthetically active radiation (PAR) throughout the water column using a LiCOR L1400 profiler (Table S1).

4.  Analytical Methods
We predicted the onset and duration of hypoxia using three different one-dimensional (1-D) methods: 
Birge-Winkler (BIW), Lake Number (LN), and Buoyancy Frequency (N). This section describes the an-
alytical approach for each method. We quantified their accuracy by comparing the modeled and meas-
ured length of hypoxia via two performance metrics: the root mean square error computed as RMSE =   

    
 

0.52
mod mes / xx x N , and the Nash-Sutcliffe model efficiency coefficient estimated as NSE  =   

1
2 2

      







x x x

xmod
/

mes mes mes
, where xmod and xmes are modeled and measured data points, re-

spectively, x
mes

 is the mean value across all measured data points, and Nx the number of measured data 
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points. Model performance characterized by the NSE can be excellent (0.65–1), very good (0.5–0.65), good 
(0.2–0.5), poor (0–0.2), and very poor (<0) (Allen et al., 2007).

4.1.  Birge-Winkler Method

We named this the Birge-Winkler (BIW) method, after the pioneering work on heat budgets and dissolved 
oxygen measurements by E. A. Birge and L. W. Winkler, respectively (Kalff, 2002). A daily net surface heat 
flux (NSHF) is used to estimate the onset of hypoxic events; thus, only meteorological forcing is considered 
to affect the onset and duration of hypoxia. This is a reasonable assumption for polymictic waterbodies since 
lake stratification changes quickly and meteorological forcing is the main driver.

4.1.1.  Net Surface Heat Flux (NSHF)

The lake surface energy budget was calculated using bulk mass-transfer coefficients adjusted for atmos-
pheric stability following Imberger (1985) and MacIntyre et al. (2002). The NSHF (W m−2) was computed 
as the sum of the net shortwave radiation (SWnet), net longwave radiation (LWnet), sensible heat flux (SE) 
and latent heat flux (LE). Net values of shortwave and longwave radiation were obtained by subtracting the 
outgoing from the incoming fraction (SWnet = SWin–SWout; LWnet = LWin - LWout). SWout was calculated as 
a fraction of SWin, using the albedo (α) of the lake surface (SWout = α SWin). Albedo was estimated taking 
into account the zenith angle and the angle of refraction (Neumann & Pierson,  1966). LWin was calcu-
lated as a function of the air temperature, Ta (°C), and cloud cover, cc (Martin & McCutcheon, 1999) as, 
LWin = 0.909 × 10−5 ×  (1 + 0.17 × cc) × 5.67 × 10−8 ×  [(Ta + 273.16)6], where cc is the ratio between the 
measured SWin and the theoretical SWin. We estimated the theoretical SWin taking into account the latitude, 
declination of the sun, date, and hour angles (Martin & McCutcheon, 1999). LWout was computed from the 
lake surface temperature using the Stefan-Boltzmann equation (MacIntyre et al., 2002). SE and LE were 
estimated given the equations,

  a pa m s aSE C c U T T� (1)

  a v m s aLE L c U q q� (2)

where ρa is the air density (= 1.2 kg m−3), Cpa is the specific heat of air (= 1,004 J kg−1 °C−1), cm is the correct-
ed mass-transfer coefficient, Lv is the latent heat of vaporization (= 2.5 × 106 J kg−1), U is wind speed (m s−1), 
Ts and Ta are water surface and air temperature (°C), respectively, qs is the specific humidity at saturation at 
Ts, and qa is the specific humidity of the air (mbar). We corrected the neutral value of the mass transfer coef-
ficient to take into account the atmospheric stability using the iterative approach described by Hicks (1975) 
following MacIntyre et al. (2002). Heat advection due to stream inflows and outflows, groundwater, and 
rain were all assumed negligible.

4.1.2.  Prediction of Hypoxia Using the Birge-Winkler (BIW) Method

We used the BIW method to estimate the onset and duration of hypoxia in Clear Lake. Each basin was con-
sidered to be an independent water body (Table 1) as the interbasin exchange flows relative to their volumes 
were assumed to be small. We used the regressed surface lake temperature measured at the deepest mooring 
at each basin (LA-03, OA-04, UA-06) and the meteorological station upwind of the predominant wind direc-
tion for each arm (Table 2). Daily values of the surface heat fluxes for each basin (SWnet, LWnet, SE, LE) were 
computed as the sum of the hourly values in one day (W m−2) multiplied by the interval of time, dt (3600 s). 
Thus, daily time series of NSHF (J m−2) were obtained by adding the different daily surface heat flux terms.

We subsequently calculated the time series of cumulative daily NSHF divided by the maximum depth (zmax) 
of the basin (J m−3) for a specific number of days (tn). This energy per unit volume term, BIW, is computed 
as,






 
        

2
3

1 max

NSHF J m
BIW J m

m

tn

t z
� (3)
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where the number of days between the onset of two consecutive hypoxic 
events, tn, was defined by selecting the dates tc1 when DO levels at the 
sediment–water interface dropped below a threshold, DOthr (Figure  2). 
As a result, we defined the cumulative energy BIW value to characterize 
the beginning of the hypoxic period on day tc1, named BIWc1. After we 
reached the cut-off value BIWc1, we initiated the summation using Equa-
tion 3 for tn days until the onset of the next hypoxic event on the next tc1. 
The BIWc1 was a calibration parameter of our model for each basin. This 
cut-off value also changed depending on the DOthr used to define hypox-
ia, as discussed in detail below.

The Birge-Winkler method provides an estimate of the length of hypoxic 
events by determining the beginning and end of such periods. The be-
ginning of the hypoxic period on day tc1 is when the energy term BIW 
= BIWc1. The end of the hypoxic period occurs when the BIW energy 
term experiences a sudden drop in 24 h, such that the rate of change in 
BIW between two consecutive days was smaller than −105 J m−3, named 
BIWc2 (Figure 2c). BIWc2 was found to have always the same value for all 
basins and DOthr, as opposed to BIWc1. As a result, we were able to define 
the length of the hypoxic period as the difference between end and start 
dates (tc2 – tc1). We validated our estimates of the length of the hypoxic 
period using the time series of measured DO concentrations taken at the 
sediment–water interface.

We calibrated the cumulative energy BIW value to characterize the be-
ginning of the hypoxic period, BIWc1, for each basin and DOthr (Table 3). 
For example, mild and severe hypoxia and avoidance for fish have been 
defined when DO values are lower than 4 mg L−1 and 2 mg L−1, respec-
tively (Biddanda et  al.,  2018; Feyrer et  al.,  2020). The fish tolerance to 
hypoxia also changes with fish species. In Clear Lake, native species seem 
to be more sensitive to low levels of DO (e.g., Clear Lake hitch, prick-
ly sculpin, tule perch) than non-native species (e.g., white catfish, carp, 
largemouth bass, bluegill, goldfish) (Thompson et al., 2013). Hypoxia at 
the sediment–water interface can also trigger internal loading. Nürnberg 
et al. (2013) used a DOthr of ∼3 mg L−1 under which they expected inter-

nal loading to occur. Laboratory experiments for Clear Lake sediments by the authors show that the release 
of nutrients started when DO was below 1 mg L−1 (unpublished data). As a result, we presented graphical 
results of the Birge-Winkler method assuming a DOthr of 3 mg L−1, which yielded a BIWc1 value ranging 
between 1.6 × 107 and 2.4 × 107 J m−3 for the three basins of Clear Lake (mean ∼2 × 107 J m−3). Then, we 
performed a sensitivity analysis of the BIWc1 value for DOthr ranging between 1 and 4 mg L−1 (Table 3).

4.2.  Lake Number (LN) Method

The Lake Number (LN) describes the ratio between stratifying and mixing 
forces, which can impact water quality such as dissolved oxygen (Rob-
ertson & Imberger, 1994). Calculation of LN requires lake temperature, 
wind, and hypsographic data and is defined as,

 

  
 

 
 

 

max
N

2 3/2
0 0

max

1

1

t
t

g

zg S z
L

zu A z

� (4)

       
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z
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z
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Figure 2.  Diagram describing the BIW method. (a) Hypothetical DO 
concentrations at the sediment–water interface, (b) daily NSHF time 
series, (c) BIW energy term computed using (b) and Equation 3 when DO 
drops below a certain threshold (DOthr) at the onset of hypoxia on day 
tc1 which yields a critical energy value BIWc1 (red dashed-dotted line). 
The blue dashed line marks the end of the hypoxic period (tc2) when DO 
values experience a sudden increase and the daily rate of change for BIW 
is smaller than −105 J m−3 (BIWc2). The gray rectangles mark the length of 
the hypoxic period, and tn is the number of days between the onset of two 
consecutive hypoxic events.

DO 
threshold 1 mg L−1 2 mg L−1 3 mg L−1 4 mg L−1

Basin

Threshold 
for internal 

loading

Threshold 
for fish 

avoidance

Threshold for 
both internal 

loading and fish 
avoidance

Maximum 
threshold 

for fish 
avoidance

Lower Arm 1.91 × 107 1.87 × 107 1.81 × 107 1.76 × 107

Oaks Arm 1.71 × 107 1.66 × 107 1.61 × 107 1.55 × 107

Lower Arm 2.52 × 107 2.45 × 107 2.38 × 107 2.31 × 107

Table 3 
Values at the Onset of Hypoxia of the Energy Term BIWc1 (J m−3), for 
Different DOthr Values, and Three Basins in Clear Lake
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where g is the acceleration of gravity (= 9.8 m s−2), zt is the thermocline height, zg is the center of volume 
above the bottom, ρ is water density at the surface or different depths (z) computed only from temperature 
following Chen and Millero (1986) since salinity contribution was negligible, A is lake surface area, u* is 
water friction velocity, and St is the Schmidt Stability. Assuming that the shear stress at the air–water inter-

face is the same on both sides, we computed u* on the water side as 


    
   

0.5
a

D
w

C U , where ρa and ρw are 

the air and water densities, respectively, CD is the momentum transfer coefficient (=1.3 × 10−3), and U is the 
magnitude of the wind. This 1-D model requires a larger amount of input data than the previous Birge-Win-
kler method. We used the LN approach to evaluate the performance of the BIW method since it considers 
both the changes in the lake stratification and the meteorological forcing.

When LN  <  1, wind shear overcomes the stratification and deep mixing can occur, while if LN  >  1 the 
strength of the stratification suppresses mixing. If mixing is suppressed, DO depleted hypolimnetic waters 
can develop due to the lack of exchange with the atmosphere. Thus, Robertson and Imberger (1994) used 
daily LN values to estimate changes in the near-sediment DO concentrations assuming two main phases:

•	 �Phase 1 was characterized by LN > 1, and DO values were mainly depleted due to bio-chemical consump-
tion (a, %), and computed as,

     b bDO DO 1 Δt t a t� (6)

•	 �In Phase 2, the isolation ended, LN < 1, and DO values increased as a result of mixing between deep and 
surface layers that authors quantified using the following equation,

   
         

s b
b b 2

DO 1 DO 1 Δ
DO DO 1

zK t t t
t t

H
� (7)

where DO is expressed as a percentage of DO saturation (%) at the surface (s) and the bottom (b) of the 
system, a (%) is the rate of DO consumption next to the sediments, Kz (m2 s−1) is the depth average eddy dif-
fusivity in the water column, Δt (s) is the time increment between t and (t-1), and H (m) is the depth of the 
water column. We used measured time series of DO from 0.5 m above the sediment–water interface during 
the first hypoxic event at each site to compute the rate of DO consumption for the model calibration, that 
occurred between late April and mid-May 2019. We obtained values of −0.31% h−1, −0.42% h−1, and −0.54% 
h−1 in the Lower, Oaks, and Upper Arms, respectively (R2 = [0.88–0.92]). We used the time series of DO next 
to the sediments after mid-May 2019 for model validation. We computed DO saturation using measured 
DO concentrations and lake water temperatures following Garcia and Gordon (1992). The coefficient of 
vertical eddy diffusivity Kz increased as LN decreased. Depth average values of Kz were calculated from the 
3-days filtered time series of lake temperature using the heat budget approach of Jassby and Powell (1975) 
to estimate the vertical turbulent transport only when the heat was mixed downwards. Values of Kz during 
upward transport were approximated using exponential regressions between Kz and buoyancy frequency, 
N (s−1) (Text S2).

4.3.  Buoyancy Frequency (N) Method

During the BIW method development, we observed an inverse relationship between DO saturation next to 
the sediments and the mean buoyancy frequency in the water column (N) calculated as,
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� (8)

where ρ is the density in the water column at depth z, nz is the number of depths in the water column where 
we measured temperature, zmax is the maximum depth, and Δρ/Δz is the vertical density gradient between 
two consecutive depths.
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The Buoyancy Frequency method estimates DO saturation values at the sediment–water interface using N  
values. To minimize the number of input variables for this approach, we computed N  values, for which 
we only required surface and bottom lake temperatures, using Equation 8 and z = 1, z = zmax, nz = 2. We 
estimated DO saturation values as,

       re–scaledDO % 1 100N� (9)

where re–scaledN  is the mean buoyancy frequency in the water column computed using only surface and 
bottom lake temperatures and re-scaled between 0 and 1. We found Equation 9 to be a good approxima-
tion since the coefficients of the linear regression DO = b + m re–scaledN  were close to b ∼ 1 and m ∼ −1 
(b = 0.87 ± 0.08, m = −0.96 ± 0.05, R2 = 0.43 ± 0.09) for the stratified periods or when N  > 0.015 s−1. This 
method would be considered as the 1-D method with “minimum requirements” or first-order approxima-
tion, albeit with some limitations, to estimate the length of the hypoxic events presented in this study. We 
found the results from this method acceptable for polymictic lakes because they captured the rapid changes 
in lake stratification as they modulate the DO availability.

5.  Results
5.1.  Lake Forcing

Meteorological forcing at Clear Lake led to noticeable patterns of daily heat fluxes over the year (Fig-
ure 3, S1, Text S3). SWnet and LE were the two dominant terms of the net surface heat flux, being source and 
sink terms, respectively. SE and LWnet fluxes were on average an order of magnitude lower. Daily heat fluxes 
changed seasonally and with the passage of cold/wet and warm/dry fronts. Daily SWnet was at a maximum 
in June (2.5 × 107 J m−2) and a minimum in December (0.5 × 107 J m−2). Cloudy periods lasted from 2-7 days 
with a mean reduction in SWnet of ∼80% (Figure 3a). SE losses were negligible over the year except during 
extremely cold and windy episodes when SE ∼ −5 x 106 J m−2. Minor heat gains due to SE occurred under 
a thermally stable atmosphere (air temperature > lake surface temperature) and windy days. On average, 
daily LWnet was −7 x 106 J m−2 (Figure 3b). We did not observe large seasonal fluctuations for SE and LWnet 
because both heat fluxes were a function of the difference between the lake surface and air temperatures, 
which remained almost constant throughout the year (Figure  S1). Mean LE values in winter and early 
spring were an order of magnitude lower than in summer and fall (−1.5 × 106 J m−2 and −1.5 × 107 J m−2, 
respectively). Large swings in LE occurred between consecutive days in the summer (∼±3 × 107 J m−2), 
mainly due to sustained high winds for 24 h, but also, as a result of low specific humidity (Figure 3c). Large 
differences in LE between basins are the result of the spatially very variable wind field across the lake 
(Figure S1).

As a result, the NSHF followed the combined trend of the SWnet and LE terms. NSHF values ranged between 
−4 ​× 107 J m−2 and 2 x 107 J m−2 (Figure 3d). On average, heat gain occurred between April and September, 
while heat losses dominated the heat budget from December to February. NSHF changed from being a 
source and a sink of heat almost daily during fall, spring, and winter months. The spatial variability across 
the lake of SWnet, SE, and LWnet was negligible, while more spatial variability occurred in the LE term, and 
thus, NSHF. Overall, LE losses were larger in the Oaks Arm than in the other two basins as a result of higher 
average wind speeds. The Upper Arm showed the largest annual NSHF of the three basins.

5.2.  Lake Stratification and DO Dynamics

Lake surface temperatures in each basin varied seasonally (∼28  °C in summer and ∼8  °C in winter) 
and monthly during spring and summer as a result of multiple stratification and mixing events (Fig-
ures  4a,  S2a,  S3a). The water column was weakly stratified in winter (Dec-Feb) with a mean buoyancy 
frequency N  < 0.005 s−1, while N  values increased up to 0.015 s−1 during fall (Sep-Nov) and early spring 
(Mar-Apr). Late spring and summer stratification (May-Aug) was stronger, with N  values above 0.02 s−1 for 
2–3 weeks, followed by mixing events lasting 1–2 weeks. This periodicity in stratification and mixing is not 
as clear in the late fall and winter when the water column stratifies and mixes almost daily. Temperature 
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gradients at depth tended to be stronger in the Upper Arm than in Oaks and Lower Arms during late sum-
mer and fall, most likely due to spatially variable NSHF as a result of the wind field across the lake.

The strength of the stratification was inversely related to DO concentrations near the sediments (Fig-
ures 4b, S2b, S3b). During spring and summer, near-bottom DO concentrations were progressively depleted 
for 10–15 days after the onset of stratification or N  > 0.015 s−1. If the near-sediment water column remained 
isolated for more than 2 weeks, fully anoxic conditions (0 mg L−1) developed next to the sediment–wa-
ter interface. We observed three pronounced hypoxic events in the Lower and Oaks Arm basins, and four 
events in the Upper Arm. The water column fully re-oxygenated in less than 24-h as a result of full mix-
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Figure 3.  Daily surface heat fluxes for each basin: Lower Arm, LA-03 (blue), Oaks Arm, OA-04 (red), and Upper Arm, 
UA-06 (black): (a) Net shortwave radiation, (b) sensible heat flux (solid line), and net longwave radiation (dashed line), 
(c) latent heat flux, and (d) net surface heat flux.
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ing and lasted for about a week if mixing conditions persisted (i.e., low NSHF). The onset of hypoxia and 
re-oxygenation in spring and summer varied between 1 to 10 days between basins, with longer and more 
frequent hypoxic events in the Upper Arm, while events were fairly synchronized in the Lower and Oaks 
Arm (Table 4, DO column). During fall, DO values ranged between 3 and 7 mg L−1 due to a sequence of 
short and weak stratification and mixing events. Brief hypoxic events occurred in the Upper Arm during fall 
as a result of the stronger stratification in this basin. DO concentrations continuously increased in winter 
reaching values ∼10 mg L−1 due to a combination of colder water temperatures and more gas exchange with 
the atmosphere.

5.3.  Birge-Winkler Method and Hypoxia

The Birge-Winkler method was used to estimate the onset and duration of the hypoxic events in the three 
basins (Figures 4c, 4d, S2c-d, S3c-d). The trend of the BIW energy term and its value at the onset of the 
hypoxia (BIWc1) provided a proxy of the DO trend next to the sediments. The trend of the BIW energy term 
presented similar patterns in spring and summer in the Oaks and Lower Arm and in each basin predicted 
3 hypoxic events lasting 2–3 weeks. Oaks Arm basin gained significantly less heat during fall and winter. 
Heat losses in the Upper Arm were minimal in the summer compared to the other two basins which yielded 
one additional hypoxic event (total of four) compared to the other two basins. The cut-off energy term or 
BIWc1 changed ∼20% between basins and up to 4% depending on the DO threshold we used to define the 
beginning of the hypoxic period, ranging between 1 and 4 mg L−1 (Table 3). Once that BIWc1 was defined, 
the Birge-Winkler method predicted the onset of the hypoxic events with an averaged error of ±3 days when 
compared with direct measurements of DO next to the sediments (Table 4 – DO and BIW columns, and 
Table S2), and a Nash-Sutcliffe model efficiency coefficient reflecting good fit (NSE = 0.4).
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Grayed sections due to the inaccuracy of the N method and the number of hypoxic events in the smaller arms.
RMSE for BIW, LN, and N methods are [2.9, 1.4, 5.24] days, respectively.
NSE for BIW, LN, and N methods are [0.40 (good), 0.65 (very good), 0.21 (good)], respectively.
Note. The difference in the length of the hypoxic periods between DO measurements and other methods is shown in Table S2.

Table 4 
Length of the Hypoxic Periods in Days for the Different Hypoxic Events Occurring in the Three Basins Using Four Different Dissolved Oxygen Concentration 
Thresholds (1, 2, 3, and 4 mg L−1) and Four Methods: Direct Observation of Dissolved Oxygen Concentrations Next to the Sediments (DO), the Birge-Winkler (BIW) 
Method, the Lake Number (LN) Method, and the Buoyancy Frequency (N) Method
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5.4.  Lake Number Method and Hypoxia

With the inverse relationship between DO and LN values, we were able to use LN to quantify the extent of 
mixing and stratification in the three basins and also predict the changes of DO next to the sediments (Fig-
ure 5, S4, S5). We computed the length of the hypoxic events and compared them with the measured DO 
values and the BIW method results (Table 4). Decreasing DO was strongly linked to high LN values due to 
reduced mixing and bottom isolation. DO was gradually depleted over ∼2 weeks after the onset of stratifi-
cation. Provided LN remained high, DO saturation remained near zero. Conversely, high values of vertical 
eddy diffusivity Kz were associated with high DO saturation values as a result of wind-driven mixing.
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Figure 4.  Lower Arm, LA-03. (a) Four-hour average lake temperature presented as height off the bottom, with 
isotherms every 1 °C. White dots mark the depths of the instruments. (b) Daily filtered dissolved oxygen concentrations 
at 0.5 m above the bottom. Dashed line at 3 mg L−1. Red dotted-dashed lines mark the onset of hypoxic events 
(DO < 3 mg L−1). Gray squares indicate the duration of hypoxia. (c) NSHF. (d) BIW energy term with BIWc1 of 
1.8 × 107 J m−3 and a DOthr of 3 mg L−1.
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Calculated values of DO saturation using the LN method show good agreement with the measured values, 
particularly during spring and summer (Apr-Aug) when N  > 0.015 s−1 (R2 = [0.45–0.66]). The LN approach 
tended to overestimate DO values in fall and winter (Sep-Feb). However, this approach predicted the onset 
of the hypoxic events with an error of ±1 day when compared with direct measurements of DO next to the 
sediments and a Nash-Sutcliffe model efficiency coefficient indicative of a very good fit (NSE = 0.65) (Ta-
bles 4 and S2). Thus, the LN approach provides a more accurate estimate of the extent of hypoxic events than 
the BIW method. Nevertheless, computing LN values requires a substantially larger number of measured 
input variables, both in-lake, and meteorological data.

5.5.  Buoyancy Frequency Method and Hypoxia

We used the inverse relationship between the mean buoyancy frequency in the water column ( N ) and the 
DO concentration next to the sediments to predict hypoxia (Figure 6). This method requires the minimum 
input data of the three methods: lake surface and bottom temperatures to compute N . Results showed a 
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Figure 5.  Lower Arm, LA-03. Twelve-hour average time series of (a) measured DO (%) at 0.5 m above the bottom in 
black, and modeled values in red using the Lake Number method. Dashed line marks 30% saturation. The gray area 
marks the calibration period (b) Mean buoyancy frequency (N) in the water column. Dashed line marks 0.02 s−1. (c) 
Lake Number (LN) values. Dashed line marks LN = 1. (d) Depth-average vertical eddy diffusivity (Kz).
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reasonable agreement between measured and calculated DO saturation values next to the sediments during 
spring and summer (R2 = 0.43 ± 0.09 in the 3 basins), but not in fall and winter (R2 = 0.18 ± 0.11 in the 3 
basins). The correlation between measured and computed DO values improved very little when N values 
were more precisely calculated using multiple lake temperature measurements throughout the water col-
umn as in Equation 8 (e.g., R2 = 0.46 ± 0.08 in the 3 basins). This method predicted the onset and length 
of the hypoxic events with an error of ±5 days when compared with direct measurements of DO, but only 
for DO thresholds of 3 and 4 mg L−1 (Tables 4 and S2, NSE = 0.21). We were unable to reproduce low levels 
of DO using the buoyancy frequency method, hence, we were not capable of predicting hypoxic events of 
DO ≤ 2 mg L−1.
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Figure 6.  Time series of dissolved oxygen saturation measured (black) and calculated (red) using the Buoyancy 
Frequency (N) method for (a) Lower Arm, LA-03, (b) Oaks Arm, OA-04, and (c) Upper Arm, UA-06.
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Method Input data Advantages Disadvantages

Birge-Winkler (BIW) Method Parameters

�-	� Lake latitude

�-	� Lake elevation or atmospheric 
pressure

�-	� Wind sensor height

�-	� Maximum lake depth

�-	� Threshold of accumulated BIW 
energy term at the onset of the 
hypoxic event, BIWc1

Hourly time series

�-	� Lake surface temperature

�-	� Air temperature

�-	� Relative humidity

�-	� Incoming shortwave radiation

�-	� Wind speed

�-	 �Input data parameters and time 
series are generally available for 
most study sites

�-	� Estimates of the length of 
the hypoxic events are on par 
with those from direct DO 
measurements at the sediment–
water interface

�-	� Values of DO next to the sediments 
are not directly computed

�-	� The calibration parameter (BIWc1) 
requires time series of DO. This 
parameter will change depending on 
the selected DO threshold

Lake Number (LN) Method Parameters

�-	� Lake latitude

�-	� Lake elevation or atmospheric 
pressure

�-	� Wind sensor height

�-	� Maximum lake depth

�-	� Lake hypsography

�-	� Depletion rate of DO next to the 
sediments

Hourly time series

�-	� Lake temperature at multiple 
depths

�-	� Air temperature

�-	� Relative humidity

�-	� Incoming shortwave radiation

�-	� Wind speed

�-	� Depth average eddy diffusivity, Kz

�-	� Surface DO

�-	� Calculation of actual DO values 
next to the sediments (%)

�-	� Most accurate estimates of the 
length of hypoxic events

�-	� The largest amount of input data 
(both parameters and time series)

�-	 �Careful calibration against DO 
measurements to obtain meaningful 
results

Buoyancy Frequency (N) Method Hourly time series

�-	� Lake surface and bottom 
temperature

�-	� Minimum amount of input data

�-	� Calculation of actual DO values 
next to the sediments (%)

�-	� Reliable results only when N > 0.015 
s−1

�-	� Reliable results only for high 
thresholds of DO to define hypoxia 
(>2 mg L−1)

Note. Model calibration requires time series of dissolved oxygen at the sediment–water interface.

Table 5 
Summary of the Input Data, Advantages, and Disadvantages of the Three Methods to Predict the Duration of Hypoxic Events.
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6.  Discussion
We predicted the onset and duration of hypoxic events for a full stratified season in the three basins of Clear 
Lake using the Lake Number method, and two original approaches, the Birge-Winkler and the Buoyancy Fre-
quency methods. The required input data, advantages, and disadvantages of each method are summarized 
in Table 5.

The new BIW method uses daily net surface heat fluxes to estimate the onset and duration of hypoxic events 
in polymictic lakes, and requires minimal input data, calibration, and validation. The calibration of the BIW 
method needs DO data next to the sediments, and the cut-off parameter BIWc1 defining the beginning of 
the hypoxic period which changes depending on the DO thresholds used to define hypoxia (Table 3). This 
method was shown to be a simple and effective tool to determine when and for how long hypoxic events 
occur in polymictic lakes where meteorology is the main driver of the extent of these events, with ±3 days of 
uncertainty (Tables 4 and S2). On average, this uncertainty represents between 10% and 15% error of the ob-
served hypoxic periods (2–3 weeks). An advantage of the BIW method is that, unlike the LN method, it does 
not require hypsographic data. The accuracy in the prediction of the length of hypoxia only improved by 
two days when using the LN method which considers both stratification and meteorological forcing, being 
the Nash-Sutcliffe model efficiency coefficient or NSE = 0.4 (good) for BIW method and NSE = 0.65 (very 
good) for LN method. Although the LN method requires a substantial amount of input data and calibration 
parameters, it yields explicit estimates of lake DO values near the sediment–water interface. In contrast, 
the N method is a simplified version of the BIW which considers only lake stratification and predicts DO 
saturation values at the sediment–water interface. However, predictions of the length of the hypoxic events 
using the N method had the largest error (±5 days, NSE = 0.21), only worked when the stratification was 
significant (N  > 0.015 s−1) and the DO threshold of hypoxia had to be above 2 mg L−1.

The BIW method balances the logistical demand for acquiring data with the reliability of the results, mak-
ing it a powerful and comparatively easy tool. It was developed using data from the three individual basins 
of Clear Lake for calibration and validation, it can be readily generalizable to other polymictic water bodies.

6.1.  Generalized Birge-Winkler (BIW) Method

The broad application of the BIW method across a variety of lakes requires the characterization of a variety 
of fundamental lake processes in addition to meteorological forcing. For example, shallow polymictic lakes 
can mix to the bottom frequently whereas deep dimictic lakes will undergo seasonal stratification and over-
turn (Kirillin & Shatwell, 2016). Lake stratification is strongly dependent on air temperature, wind speed, 
and basin morphometric characteristics, such as maximum depth and surface area (Adrian et al., 2009; 
Kraemer et al., 2015). Mictic state and stratification dynamics will directly impact seasonal rates of DO 
consumption, and, in turn, will drive the availability of nutrients at the sediment–water interface (Nürn-
berg, 2002). The rate of DO consumption affects the calibration of the BIW method, which can be directly 
measured or estimated as a function of factors such as lake trophic state or organic matter loads from the 
watershed (Del Giorgio & Williams, 2005).

The generalization of the BIW method requires calibration of the BIWc1 value at the onset of the hypoxic 
period. The BIW energy term has already been normalized by the maximum depth of the basin. We devel-
oped a linear regression between BIWc1 values and the ratio between the surface area (A0) and the daily 
rate of DO consumption at the sediment-water interface (a = [7.4–13] % d−1), which yielded the following 
relationship:


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where b = 1.42 × 107 J m−3 and m = 1.20 J m−5 d−1 (R2 = 0.95, p < 0.01, statistically significant, 12 data 
points) when the DO threshold varied between 1 and 4 mg L−1. The use of Equation 10 to estimate BIWc1 
yielded errors of less than 1 day when predicting the onset and length of hypoxia in our study sites. This 
is a first-order approximation of this model that would be further refined with the inclusion of secondary 
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variables in the regression. For example, DO consumption in monomictic or dimictic lakes may change 
over time due to limited overturn periods. DO consumption will also change depending on the trophic state 
of the lake and the validity of this method should be tested in mesotrophic systems. Inflows may add or 
remove energy as heat to the system and impact the lake stratification, and thus, values of the calibration 
parameter BIWc1. Another energy source that may modify BIWc1 is the artificial aeration. Energy may be 
also redistributing in the system due to internal waves. As a result, the inclusion of secondary variables in 
Equation 10 will depend on the dominance of the process they represent.

6.2.  Uses of the BIW Method

Lake stratification and oxygen are key for ecological processes and water quality in lakes. Strong lake strat-
ification intensifies oxygen depletion which reduces fish habitat, promotes nuisance HABs, and favors in-
ternal nutrient loading (Diaz & Rosenberg, 2008; Orihel et al., 2017; Paerl & Paul, 2012). Simple methods to 
predict hypoxia, such as the BIW or N methods, can be extremely powerful at relatively low cost to address 
these aquatic ecological challenges.

The reduction of fish habitat due to hypoxia/anoxia is a growing concern (Feyrer et al., 2020; Goldman & 
Wetzel, 1963). We suggest that the BIW method can be modified to function as an indicator of fish stress 
resulting from hypoxia. For example, the ratio between the heat content per unit volume in the lake (the 
BIW energy term) and the shear energy in the water per unit volume (product between lake density ρ and 
the square of the shear velocity on the lake surface u*) represents a balance between stabilizing and desta-
bilizing forces, which together control rates of DO depletion and replenishment within the water column, 
and thus can be calibrated to reflect stress or potential mortality of different fishes.

Hypoxia also favors internal nutrient loading from the sediments (Welch & Cooke, 1995). Sediment nutrient 
release is directly related to the length of the DO depleted period and the sediment area exposed to low DO 
concentrations (Orihel et al., 2017). When properly calibrated, the BIW method estimates the length of the 
hypoxic period without requiring in situ measurement of DO, which will inform internal nutrient loading 
calculations. For Clear Lake, this model proves predictions of the extent of hypoxia with an uncertainty of 
∼15%, which translates into a similar error for the internal loading estimates.

Finally, the direct effects of climate change on lake stratification have been broadly recognized (Toffolon 
et al., 2020; Woolway & Merchant, 2019). Changes over time in air temperature, wind speeds, and relative 
humidity will alter surface temperatures in lakes and thermal stratification dynamics (Adrian et al., 2009), 
while lake morphometry influences the response of lake stratification to changing air temperatures and 
wind speeds (Kraemer et al., 2015). Wind magnitude directly affects the NSHF, and thus, the BIW energy 
term, but wind also affects mixing as expressed by the Lake Number. Since the BIW method takes into ac-
count the effects of changing air temperature, wind, and lake morphometry (depth and area), we believe 
it will provide critical information to guide management and restoration measurements in Clear Lake and 
other lakes with similar ecological challenges due to hypoxia.

6.3.  Uncertainties and Future Lines of Research

This work has explored and discussed simple one-dimensional (1-D) methods to predict hypoxia in shallow 
lakes. We have proved these methods can provide a reasonable first-order approximation of the onset of 
hypoxic events in water bodies where only vertical changes are of interest. However, a two-dimensional (2-
D) approach may be required if the system exhibits both longitudinal and vertical hydrodynamic and water 
quality gradients, such as CE-QUAL model (Cole & Wells, 1995). These tools can be particularly effective in 
elongated deep systems where lateral gradients are not appreciable. Nevertheless, this assumption may not 
be sufficient to reproduce three-dimensional (3-D) transport processes in large systems with complex ba-
thymetry, where lateral changes can be significant. Different transport processes have been studied in multi-
basin lakes, such as internal waves, advection, or rotational transport (Flood et al., 2020; Imam et al., 2019). 
Results are generally very specific for each site study where a 3-D model has been utilized to depict the dis-
tribution of particles and solutes in the water body (Valipour et al., 2019). The outputs of more complex 3-D 
models could inform potential changes in lake DO concentrations at different temporal and spatial scales 
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than those given by methods detailed in this work but come at the cost of significant processing overhead. 
Given growing concerns of DO depletion in the water column as a result of the system eutrophication and 
warming climate (Schindler et al., 2016), it is important to have potential tools, from 1-D to 3-D, to study 
each of these problems even if the performance of these tools is still an active area of research (Toffolon & 
Serafini, 2013).

7.  Conclusions
Predicting the DO drawdown in lakes normally requires intensive data and complex models, which are 
often not available or affordable for many lakes. To overcome this challenge, we developed and tested the 
Birge-Winkler (BIW) method to forecast the onset and duration of hypoxic events in polymictic lakes. The 
calibration of this method required lake DO time series adjacent to the sediments, but its validation proved 
the method to be accurate for predicting the onset of hypoxia without computing or measuring actual lake 
DO values. The good performance of the BIW method indicates that meteorological forcing is the main driv-
er of hypoxia in polymictic lakes. We suggest this method can be calibrated for use in other shallow lakes, 
providing a useful and cost-effective decision-making tool.

Data Availability Statement
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